135 research outputs found

    Optimal Pacing for Running 400 m and 800 m Track Races

    Full text link
    Physicists seeking to understand complex biological systems often find it rewarding to create simple "toy models" that reproduce system behavior. Here a toy model is used to understand a puzzling phenomenon from the sport of track and field. Races are almost always won, and records set, in 400 m and 800 m running events by people who run the first half of the race faster than the second half, which is not true of shorter races, nor of longer. There is general agreement that performance in the 400 m and 800 m is limited somehow by the amount of anaerobic metabolism that can be tolerated in the working muscles in the legs. A toy model of anaerobic metabolism is presented, from which an optimal pacing strategy is analytically calculated via the Euler-Lagrange equation. This optimal strategy is then modified to account for the fact that the runner starts the race from rest; this modification is shown to result in the best possible outcome by use of an elementary variational technique that supplements what is found in undergraduate textbooks. The toy model reproduces the pacing strategies of elite 400 m and 800 m runners better than existing models do. The toy model also gives some insight into training strategies that improve performance.Comment: 14 pages, 4 figures, submitted to the American Journal of Physic

    Effect of combined uphill-downhill sprint training on kinematics and maximum running speed in experienced sprinters

    Get PDF
    This study examined the effects of sprint running training on sloping surfaces (3°) in experienced sprinters using selected kinematic variables. Twelve experienced sprinters were randomly allocated to two training groups (combined uphill–downhill and horizontal). Pre- and post-training tests were performed to examine the effects of six weeks of training on maximum running speed, step rate, step length, step time, contact time, braking and propulsive phase of contact time, flight time and selected postural characteristics during a step cycle in the final steps of a 35m sprint test. In the combined uphill–downhill training group, maximum running speed was substantially greater (from 9.08 ± 0.90 m s-1 to 9.51 ± 0.62 m s-1; p <0.05) after training by 4.8%; step rate, contact time, step time and concentric phase was not modified. There were no significant changes in maximal speed or sprint kinematics in the horizontal training group. Overall, the posture characteristics did not change with training. The combined uphill–downhill training method was substantially more effective in improving the maximum running speed in experienced sprinters than a traditional horizontal training method

    Association of Fecal Microbial Diversity and Taxonomy with Selected Enzymatic Functions

    Get PDF
    Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial β-glucuronidase and β-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify β-glucuronidase and β-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal β-glucuronidase was elevated with weight loss of at least 5 lb. (P = 0.03), whereas β-glucosidase was marginally reduced in the four vegetarians (P = 0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all P = 0.05–0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation

    Human Population Differentiation Is Strongly Correlated with Local Recombination Rate

    Get PDF
    Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and FST has a qualitatively different relationship for FST between African and non-African populations and for FST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history

    Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    Get PDF
    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available

    A unified data representation theory for network visualization, ordering and coarse-graining

    Get PDF
    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.Comment: 13 pages, 5 figure

    Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps

    Get PDF
    Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html

    Pervasive Hitchhiking at Coding and Regulatory Sites in Humans

    Get PDF
    Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald–Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites—either recurrent selective sweeps or background selection—on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism

    Current understanding of the human microbiome

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
    corecore