511 research outputs found
MCMC Exploration of Supermassive Black Hole Binary Inspirals
The Laser Interferometer Space Antenna will be able to detect the inspiral
and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the
Universe. Standard matched filtering techniques can be used to detect and
characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally
suited to this and other LISA data analysis problems as they are able to
efficiently handle models with large dimensions. Here we compare the posterior
parameter distributions derived by an MCMC algorithm with the distributions
predicted by the Fisher information matrix. We find excellent agreement for the
extrinsic parameters, while the Fisher matrix slightly overestimates errors in
the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5
figures, Published Versio
The search for black hole binaries using a genetic algorithm
In this work we use genetic algorithm to search for the gravitational wave
signal from the inspiralling massive Black Hole binaries in the simulated LISA
data. We consider a single signal in the Gaussian instrumental noise. This is a
first step in preparation for analysis of the third round of the mock LISA data
challenge. We have extended a genetic algorithm utilizing the properties of the
signal and the detector response function. The performance of this method is
comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico
Report on the first round of the Mock LISA Data Challenges
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the
development of LISA data analysis tools and capabilities, and demonstrating the
technical readiness already achieved by the gravitational-wave community in
distilling a rich science payoff from the LISA data output. The first round of
MLDCs has just been completed: nine data sets containing simulated
gravitational wave signals produced either by galactic binaries or massive
black hole binaries embedded in simulated LISA instrumental noise were released
in June 2006 with deadline for submission of results at the beginning of
December 2006. Ten groups have participated in this first round of challenges.
Here we describe the challenges, summarise the results, and provide a first
critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference,
clarified some text, removed typos. Results unchanged; Removed author, minor
edits, reflects submitted versio
Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA
Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
Inference on inspiral signals using LISA MLDC data
In this paper we describe a Bayesian inference framework for analysis of data
obtained by LISA. We set up a model for binary inspiral signals as defined for
the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte
Carlo (MCMC) algorithm to facilitate exploration and integration of the
posterior distribution over the 9-dimensional parameter space. Here we present
intermediate results showing how, using this method, information about the 9
parameters can be extracted from the data.Comment: Accepted for publication in Classical and Quantum Gravity, GWDAW-11
special issu
Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce
The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007
to provide the LISA Project with vetted codes, source distribution models, and
results related to parameter estimation. The Taskforce's goal is to be able to
quickly calculate the impact of any mission design changes on LISA's science
capabilities, based on reasonable estimates of the distribution of
astrophysical sources in the universe. This paper describes our Taskforce's
work on massive black-hole binaries (MBHBs). Given present uncertainties in the
formation history of MBHBs, we adopt four different population models, based on
(i) whether the initial black-hole seeds are small or large, and (ii) whether
accretion is efficient or inefficient at spinning up the holes. We compare four
largely independent codes for calculating LISA's parameter-estimation
capabilities. All codes are based on the Fisher-matrix approximation, but in
the past they used somewhat different signal models, source parametrizations
and noise curves. We show that once these differences are removed, the four
codes give results in extremely close agreement with each other. Using a code
that includes both spin precession and higher harmonics in the
gravitational-wave signal, we carry out Monte Carlo simulations and determine
the number of events that can be detected and accurately localized in our four
population models.Comment: 14 pages, 2 figures, 5 tables, minor changes to match version to be
published in the proceedings of the 7th LISA Symposium. For more information
see the Taskforce's wiki at http://www.tapir.caltech.edu/dokuwiki/lisape:hom
The Mock LISA Data Challenges: from Challenge 1B to Challenge 3
The Mock LISA Data Challenges are a programme to demonstrate and encourage
the development of LISA data-analysis capabilities, tools and techniques. At
the time of this workshop, three rounds of challenges had been completed, and
the next was about to start. In this article we provide a critical analysis of
entries to the latest completed round, Challenge 1B. The entries confirm the
consolidation of a range of data-analysis techniques for Galactic and
massive--black-hole binaries, and they include the first convincing examples of
detection and parameter estimation of extreme--mass-ratio inspiral sources. In
this article we also introduce the next round, Challenge 3. Its data sets
feature more realistic waveform models (e.g., Galactic binaries may now chirp,
and massive--black-hole binaries may precess due to spin interactions), as well
as new source classes (bursts from cosmic strings, isotropic stochastic
backgrounds) and more complicated nonsymmetric instrument noise.Comment: 20 pages, 3 EPS figures. Proceedings of the 12th Gravitational Wave
Data Analysis Workshop, Cambridge MA, 13--16 December 2007. Typos correcte
eLISA: Astrophysics and cosmology in the millihertz regime
This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name "eLISA") will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA's measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA's Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits
Scientific Objectives of Einstein Telescope
The advanced interferometer network will herald a new era in observational
astronomy. There is a very strong science case to go beyond the advanced
detector network and build detectors that operate in a frequency range from 1
Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors
will be able to probe a range of topics in nuclear physics, astronomy,
cosmology and fundamental physics, providing insights into many unsolved
problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201
- …