89 research outputs found

    Drones for research on sea turtles and other marine vertebrates – A review

    Get PDF
    We review how unmanned aerial vehicles (UAVs), often referred to as drones, are being deployed to study the abundance and behaviour of sea turtles, identifying some of the commonalities and differences with studies on other marine vertebrates, including marine mammals and fish. UAV studies of all three groups primarily focus on obtaining estimates of abundance, distribution and density, while some studies have provided novel insights on the body condition, movement and behaviour of individuals (including inter-specific interactions). We discuss the emerging possibilities of how UAVs can become part of the standard methodologies for sea turtle ecologists through combining information on abundance and behaviour. For instance, UAV surveys can reveal turtle densities and hence operational sex ratios of sea turtles, which could be linked to levels of multiple paternity. Furthermore, embedding UAV surveys within a mark-recapture framework will enable improved abundance estimates. The complexity of behaviours revealed by direct observations of sea turtles and animal-borne cameras can also be examined using UAV footage, complementing studies using electronic tags, such as time-depth recorders and satellite transmitters. Overall, UAVs provide a low-cost approach of quantifying the flexibility of marine animal behaviour, allowing us to integrate information on abundance to establish how individuals respond to the presence of other organisms and the immediate environment

    Global sea turtle conservation successes

    Full text link
    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story

    Female–female aggression : structure of interaction and outcome in loggerhead sea turtles

    Full text link
    Aggressive behaviour between females of the same species is not widely documented, particularly in marine vertebrates. During a 3 yr in-water survey at the temperate loggerhead sea turtle Caretta caretta breeding area of Zakynthos, Greece, female–female interactions comprised 4% of all female loggerhead sighting events (n = 60 out of 1449 events). Male–female interactions comprised an additional 4% of sighting events, while 92% were of solitary females. The structure of interactions was analysed for 58 of these sighting events, each lasting an average of 3.4 min (SD ± 1) and comprising a total of 3.1 h observation time. We found that interactions involved ritualized escalation in behaviour from passive threat displays (e.g. head–tail circling) to aggressive combat (e.g. sparring). We suggest that circling individuals evaluate opponent size, sparring individuals test opponent strength, and that the positioning of the prehensile tail signals motivational intent to either escalate or abort. The presence of intruder females triggered a passive response in 100% of events involving basking and swimming turtles (n = 19); although residents resting on the seabed only responded on 69% of occasions (n = 27), their response was almost 4 times more likely to escalate to one of aggression. Our results suggest that certain sites may be preferentially sought after and defended by sea turtles

    Conservation hotspots : implications of intense spatial area use by breeding male and female loggerheads at the Mediterranean’s largest rookery

    Full text link
    The implementation of appropriate protection measures for endangered species in protected areas requires knowledge of their fine-scale habitat use. In May and June of 2006 and 2007, we used GPS loggers (some linked to the Argos system) and a conventional Argos transmitter to track male and female loggerhead turtles Caretta caretta in the vicinity of the breeding area of Laganas Bay within the National Marine Park of Zakynthos, Greece. We obtained (1) 9681 useable locations (mean: 1383 locations ind.–1; range: 519 to 2198 locations) from Tracktag GPS loggers attached to 7 females for a mean duration of 34 d (range: 17 to 52 d); (2) 1245 useable locations (mean: 311 locations ind.–1; range: 38 to 1110 locations) from 4 males fitted with Fastloc Argos tags for a mean duration of 29 d (range: 3 to 51 d) and (3) 100 locations from 1 male fitted with a conventional Argos satellite tag tracked for 128 d. GPS data indicated that before the onset of nesting, both males and females primarily used an area within 500 m of the shore along a core 9 km stretch of coastline, where existing protective legislation requires strengthening. Our observations suggest that a 76.7% female-biased operational sex ratio, measured previously from in-water surveys, may represent a realistic sex ratio estimate in the period before nesting starts. In the first month following the onset of nesting, female spatial distribution remained similar, whereas most males departed for distant areas presumably to forage. Our study provides quantitative evidence of the need to improve the management planning and conservation measures to protect sea turtles in a coastal breeding area, and new insights on male turtle migration

    Global meta‐analysis of over 50 years of multidisciplinary and international collaborations on transmissible cancers

    Get PDF
    International audienceAlthough transmissible cancers have, so far, only been documented in three independent animal groups, they not only impact animals that have high economic, environmental and social significance, but they are also one of the most virulent parasitic life forms. Currently known transmissible cancers traverse terrestrial and marine environments, and are predicted to be more widely distributed across animal groups; thus, the implementation of effective collaborative scientific networks is important for combating existing and emerging forms. Here, we quantify how collaborative effort on the three known transmissible cancers has advanced through the formation of collaborative networks among institutions and disciplines. These three cancers occur in bivalves (invertebrates—disseminated neoplasia; DN), Tasmanian devils (vertebrate—marsupial; devil facial tumour disease; DFTD) and dogs (vertebrate—eutherian mammal; canine transmissible venereal tumour; CTVT). Research on CTVT and DN has been conducted since 1876 and 1969, respectively, whereas systematic research on DFTD only started in 2006. Yet, collaborative effort on all three diseases is global, encompassing six major Scopus subject areas. Collaborations steadily increased between 1963 and 2006 for CTVT and DN, with similar acceleration for all three cancers since 2006. Network analyses demonstrated that scientists are organizing themselves into efficient collaborative networks; however, these networks appear to be far stronger for DFTD and DN, possibly due to the recent detection of new strains adding impetus to research and associated publications (enhancing citation trajectories). In particular, global and multidisciplinary collaborations formed almost immediately after DFTD research was initiated, leading to similar research effort and relatively greater research outputs compared to the other two diseases. Therefore, in the event of outbreaks of new lineages of existing transmissible cancers, or the discovery of new transmissible cancers in the future, the rapid formation of international collaborations spanning relevant disciplines is vital for the efficient management of these diseases

    Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation

    Get PDF
    Significance The Fe(II)- and 2-oxoglutarate (2OG)-dependent hypoxia-inducible transcription factor prolyl-hydroxylases play a central role in human oxygen sensing and are related to other prolyl-hydroxylases involved in eukaryotic collagen biosynthesis and ribosomal modification. The finding that a PHD-related prolyl-hydroxylase in Pseudomonas spp. regulates pyocyanin biosynthesis supports prokaryotic origins for the eukaryotic prolyl-hydroxylases. The identification of the switch I loop of elongation factor Tu (EF-Tu) as a Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) substrate provides evidence of roles for 2OG oxygenases in both translational and transcriptional regulation. A structure of the PPHD:EF-Tu complex, the first to the authors' knowledge of a 2OG oxygenase with its intact protein substrate, reveals that major conformational changes occur in both PPHD and EF-Tu and will be useful in the design of new prolyl-hydroxylase inhibitors. </jats:p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Translating Marine Animal Tracking Data into Conservation Policy and Management

    Get PDF
    There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is however difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits

    Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles

    Get PDF
    Determining the time of day that animals initiate and end migration, as well as variation in diel movement patterns during migration, provides insights into the types of strategy used to maximise energy efficiency and ensure successful completion of migration. However, obtaining this level of detail has been difficult for long-distance migratory marine species. Thus, we investigated whether the large volume of highly accurate locations obtained by Argos-linked Fastloc-GPS transmitters could be used to identify the time of day that adult green (n = 8 turtles, 9487 locations) and loggerhead (n = 46 turtles, 47,588 locations) sea turtles initiate and end migration, along with potential resting strategies during migration. We found that departure from and arrival at breeding, stopover and foraging sites consistently occurred during the daytime, which is consistent with previous findings suggesting that turtles might use solar visual cues for orientation. Only seven turtles made stopovers (of up to 6 days and all located close to the start or end of migration) during migration, possibly to rest and/or refuel; however, observations of day versus night speed of travel indicated that turtles might use other mechanisms to rest. For instance, turtles travelled 31% slower at night compared to day during their oceanic crossings. Furthermore, within the first 24 h of entering waters shallower than 100 m towards the end of migration, some individuals travelled 72% slower at night, repeating this behaviour intermittently (each time for a one-night duration at 3–6 day intervals) until reaching the foraging grounds. Thus, access to data-rich, highly accurate Argos-linked Fastloc-GPS provided information about differences in day versus night activity at different stages in migration, allowing us, for the first time, to compare the strategies used by a marine vertebrate with terrestrial land-based and flying species

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido
    corecore