111 research outputs found

    A developmental role for the chromatin‑regulating CoREST complex in the cnidarian Nematostella vectensis

    Get PDF
    Background: Chromatin-modifying proteins are key players in the regulation of development and cell differentiation in animals. Most chromatin modifiers, however, predate the evolution of animal multicellularity, and how they gained new functions and became integrated into the regulatory networks underlying development is unclear. One way this may occur is the evolution of new scaffolding proteins that integrate multiple chromatin regulators into larger complexes that facilitate coordinated deposition or removal of different chromatin modifications. We test this hypothesis by analyzing the evolution of the CoREST-Lsd1-HDAC complex. Results: Using phylogenetic analyses, we show that a bona fide CoREST homolog is found only in choanoflagellates and animals. We then use the sea anemone Nematostella vectensis as a model for early branching metazoans and identify a conserved CoREST complex by immunoprecipitation and mass spectrometry of an endogenously tagged Lsd1 allele. In addition to CoREST, Lsd1 and HDAC1/2 this complex contains homologs of HMG20A/B and PHF21A, two subunits that have previously only been identified in mammalian CoREST complexes. NvCoREST expression overlaps fully with that of NvLsd1 throughout development, with higher levels in differentiated neural cells. NvCoREST mutants, generated using CRISPR-Cas9, fail to develop beyond the primary polyp stage, thereby revealing essential roles during development and for the differentiation of cnidocytes that phenocopy NvLsd1 mutants. We also show that this requirement is cell autonomous using a cell-type-specific rescue approach. Conclusions: The identification of a Nematostella CoREST-Lsd1-HDAC1/2 complex, its similarity in composition with the vertebrate complex, and the near-identical expression patterns and mutant phenotypes of NvCoREST and NvLsd1 suggest that the complex was present before the last common cnidarian-bilaterian ancestor and thus represents an ancient component of the animal developmental toolkit.University of BergenResearch Council of Norway 251185/F20Sars Centre core budgetResearch Council of Norway INFRASTRUKTUR program 29591

    Gelatinous versus non-gelatinous zooplankton: their value as food for planktivorous coral reef fishes

    Get PDF
    Coral reefs are highly productive ecosystems, in part due to the productivity of planktivorous fishes. The planktivorous fish community contains two distinct groups which target either the gelatinous or the non-gelatinous fractions of the incoming zooplankton. However, the nutritional value of these prey fractions and, consequently, their potential contribution to planktivorous fish productivity are poorly understood. We explored the zooplankton fractions potential contribution to planktivorous fish productivity (our function of interest), by quantifying the nutritional content a key trait of the gelatinous and non-gelatinous prey fractions which are accessible to reef-associated diurnal planktivores. By combining vertical plankton tows with stoichiometric analyses, we found that the three zooplankton community fractions—gelatinous, > 2 mm non-gelatinous and 2 mm non-gelatinous (0.06 gN) and gelatinous (0.03 gN) communities, respectively. Overall, our results highlight the quality of both gelatinous and non-gelatinous zooplankton as prey for planktivorous fishes, emphasizing the potential importance of the often-overlooked gelatinous fraction

    Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis

    Get PDF
    Chromatin regulation is a key process in development but its contribution to the evolution of animals is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in a cell/tissue-specific manner. Using the cnidarian Nematostella vectensis as a basal metazoan model, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that NvLsd1 expression is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to developmental abnormalities. This includes the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, as a result of a cell-autonomous requirement for NvLsd1. Together this suggests that the integration of chromatin modifying proteins into developmental regulation predates the split of the cnidarian and bilaterian lineages and constitutes an ancient feature of animal development.publishedVersio

    Cognitive behaviour therapy versus counselling intervention for anxiety in young people with high-functioning autism spectrum disorders: a pilot randomised controlled trial

    Get PDF
    The use of cognitive-behavioural therapy (CBT) as a treatment for children and adolescents with autism spectrum disorder (ASD) has been explored in a number of trials. Whilst CBT appears superior to no treatment or treatment as usual, few studies have assessed CBT against a control group receiving an alternative therapy. Our randomised controlled trial compared use of CBT against person-centred counselling for anxiety in 36 young people with ASD, ages 12–18. Outcome measures included parent- teacher- and self-reports of anxiety and social disability. Whilst each therapy produced improvements inparticipants, neither therapy was superior to the other to a significant degree on any measure. This is consistent with findings for adults

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    Resistance of Trichoplusia ni to Bacillus thuringiensis Toxin Cry1Ac Is Independent of Alteration of the Cadherin-Like Receptor for Cry Toxins

    Get PDF
    Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene. However, whether cadherin is also involved with Cry1Ac-resistance in T. ni requires to be understood. Here we report that the Cry1Ac-resistance in T. ni is independent of alteration of the cadherin. The T. ni cadherin cDNA was cloned and the cadherin sequence showed characteristic features known to cadherins from Lepidoptera. Various T. ni cadherin gene alleles were identified and genetic linkage analysis of the cadherin alleles with Cry1Ac-resistance showed no association of the cadherin gene with the Cry1Ac-resistance in T. ni. Analysis of cadherin transcripts showed no quantitative difference between the susceptible and Cry1Ac-resistant T. ni larvae. Quantitative proteomic analysis of midgut BBMV proteins by iTRAQ-2D-LC-MS/MS determined that there was no quantitative difference in cadherin content between the susceptible and the resistant larvae and the cadherin only accounted for 0.0014% (mol%) of the midgut BBMV proteins, which is 1/300 of APN1 in molar ratio. The cadherin from both the susceptible and resistant larvae showed as a 200-kDa Cry1Ac-binding protein by toxin overlay binding analysis, and nano-LC-MS/MS analysis of the 200-kDa cadherin determined that there is no quantitative difference between the susceptible and resistant larvae. Results from this study indicate that the Cry1Ac-resistance in T. ni is independent of cadherin alteration

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases

    Get PDF
    The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe-4(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH2)(2)]ClO4 center dot 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X- ray crystallography, magnetic susceptibility measurements and variable-temperature Mossbauer spectroscopy

    EvoChromo: towards a synthesis of chromatin biology and evolution

    Get PDF
    Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term ‘EvoChromo’. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution

    Down Regulation of a Gene for Cadherin, but Not Alkaline Phosphatase, Associated with Cry1Ab Resistance in the Sugarcane Borer Diatraea saccharalis

    Get PDF
    The sugarcane borer, Diatraea saccharalis, is a major target pest of transgenic corn expressing Bacillus thuringiensis (Bt) proteins (i.e., Cry1Ab) in South America and the mid-southern region of the United States. Evolution of insecticide resistance in such target pests is a major threat to the durability of transgenic Bt crops. Understanding the pests' resistance mechanisms will facilitate development of effective strategies for delaying or countering resistance. Alterations in expression of cadherin- and alkaline phosphatase (ALP) have been associated with Bt resistance in several species of pest insects. In this study, neither the activity nor gene regulation of ALP was associated with Cry1Ab resistance in D. saccharalis. Total ALP enzymatic activity was similar between Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-RR) strains of D. saccharalis. In addition, expression levels of three ALP genes were also similar between Cry1Ab-SS and -RR, and cDNA sequences did not differ between susceptible and resistant larvae. In contrast, altered expression of a midgut cadherin (DsCAD1) was associated with the Cry1Ab resistance. Whereas cDNA sequences of DsCAD1 were identical between the two strains, the transcript abundance of DsCAD1 was significantly lower in Cry1Ab-RR. To verify the involvement of DsCAD1 in susceptibility to Cry1Ab, RNA interference (RNAi) was employed to knock-down DsCAD1 expression in the susceptible larvae. Down-regulation of DsCAD1 expression by RNAi was functionally correlated with a decrease in Cry1Ab susceptibility. These results suggest that down-regulation of DsCAD1 is associated with resistance to Cry1Ab in D. saccharalis
    • …
    corecore