114 research outputs found

    <Notes> Sampling Rapidly Dwindling Chimpanzee Populations

    Get PDF

    Siglec receptors impact mammalian lifespan by modulating oxidative stress.

    Get PDF
    Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan

    Association Between Tuberculosis, Diabetes and 25 Hydroxyvitamin D in Tanzania: A Longitudinal Case Control Study.

    Get PDF
    Vitamin D level is inversely associated with tuberculosis (TB) and diabetes (DM). Vitamin D could be a mediator in the association between TB and DM. We examined the associations between vitamin D, TB and DM. Consecutive adults with TB and sex- and age-matched volunteers were included in a case-control study in Dar es Salaam, Tanzania. Glycemia and total vitamin D (25(OH)D) were measured at enrolment and after TB treatment in cases. The association between low 25(OH)D (<75 nmol/l) and TB was evaluated by logistic regression adjusted for age, sex, body mass index, socioeconomic status, sunshine hours, HIV and an interaction between low 25(OH)D and hyperglycemia. The prevalence of low 25(OH)D was similar in TB patients and controls (25.8 % versus 31.0 %; p = 0.22). In the subgroup of patients with persistent hyperglycemia (i.e. likely true diabetic patients), the proportion of patients with low 25(OH)D tended to be greater in TB patients (50 % versus 29.7 %; p = 0.20). The effect modification by persistent hyperglycemia persisted in the multivariate analysis (pinteraction = 0.01). Low 25(OH)D may increase TB risk in patients with underlying DM. Trials should examine if this association is causal and whether adjunct vitamin D therapy is beneficial in this population

    Key Contributions by the Swiss Tropical and Public Health Institute Towards New and Better Drugs for Tropical Diseases

    Get PDF
    Thanks to its expertise in clinical research, epidemiology, infectious diseases, microbiology, parasitology, public health, translational research and tropical medicine, coupled with deeply rooted partnerships with institutions in low- and middle-income countries (LMICs), the Swiss Tropical and Public Health Institute (Swiss TPH) has been a key contributor in many drug research and development consortia involving academia, pharma and product development partnerships. Our know-how of the maintenance of parasites and their life-cycles in the laboratory, plus our strong ties to research centres and disease control programme managers in LMICs with access to field sites and laboratories, have enabled systems for drug efficacy testing in vitro and in vivo, clinical research, and modelling to support the experimental approaches. Thus, Swiss TPH has made fundamental contributions towards the development of new drugs – and the better use of old drugs – for neglected tropical diseases and infectious diseases of poverty, such as Buruli ulcer, Chagas disease, food-borne trematodiasis (e.g. clonorchiasis, fascioliasis and opisthorchiasis), human African trypanosomiasis, leishmaniasis, malaria, schistosomiasis, soil-transmitted helminthiasis and tuberculosis. In this article, we show case the success stories of molecules to which Swiss TPH has made a substantial contribution regarding their use as anti-infective compounds with the ultimate aim to improve people’s health and well-being

    Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity

    Get PDF
    Background. Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings. Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance. Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation
    corecore