21 research outputs found

    Byzantine Failures and Security: Arbitrary is not (always) Random

    Get PDF
    The Byzantine failure model allows arbitrary behavior of a certain fraction of network nodes in a distributed system. It was introduced to model and analyse the effects of very severe hardware faults in aircraft control systems. Lately, the Byzantine failure model has been used in the area of network security where Byzantine-tolerance is equated with resilience against malicious attackers. We discuss two reasons why one should be careful in doing so. Firstly, Byzantine-tolerance is not concerned with secrecy and so special means have to be employed if secrecy is a desired system property. Secondly, in contrast to the domain of hardware faults, in a security setting it is difficult to compute the assumption coverage of the Byzantine failure model, i.e., the probability that the failure assumption holds in practice. For this latter point we develop a methodology which allows to estimate the reliability of a Byzantine-tolerant solution exposed to attackers of different strengths

    A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms

    Get PDF
    Self-stabilizing systems can automatically recover from arbitrary state perturbations in finite time. They are therefore well-suited for dynamic, failure prone environments. Spanning-tree construction in distributed systems is a fundamental task which forms the basis for many other network algorithms (like token circulation or routing).This paper surveys self-stabilizing algorithms that construct a spanning tree within a network of processing entities. Lower bounds and related work are also discussed

    A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms

    Get PDF
    Self-stabilizing systems can automatically recover from arbitrary state perturbations in finite time. They are therefore well-suited for dynamic, failure prone environments. Spanning-tree construction in distributed systems is a fundamental task which forms the basis for many other network algorithms (like token circulation or routing).This paper surveys self-stabilizing algorithms that construct a spanning tree within a network of processing entities. Lower bounds and related work are also discussed

    Automating the Addition of Fail-Safe Fault-Tolerance: Beyond Fusion-Closed Specifications

    Get PDF
    The tolerance theory by Arora and Kulkarni views a fault-tolerant program as the composition of a fault-intolerant program and fault tolerance components called detectors and correctors.At its core, the theory assumes that the correctness specifications under consideration are fusion closed.In general, fusion closure of specifications can be achieved by adding history variables to the program. However, addition of history variables causes an exponential growth of the state space of the program.To redress this problem, we present a method which can be used to add history information to a program in a way that (in a certain sense) minimizes the additional states. Hence, automated methods that add fault tolerance can now be efficiently applied to environments with not fusion closed specifications

    Group diversity and group identification:the moderating role of diversity beliefs

    Get PDF
    Research on diversity in teams and organizations has revealed ambiguous results regarding the effects of group composition on workgroup performance. The categorization—elaboration model (van Knippenberg et al., 2004) accounts for this variety and proposes two different underlying processes. On the one hand diversity may bring about intergroup bias which leads to less group identification, which in turn is followed by more conflict and decreased workgroup performance. On the other hand, the information processing approach proposes positive effects of diversity because of a more elaborate processing of information brought about by a wider pool and variety of perspectives in more diverse groups. We propose that the former process is contingent on individual team members' beliefs that diversity is good or bad for achieving the team's aims. We predict that the relationship between subjective diversity and identification is more positive in ethnically diverse project teams when group members hold beliefs that are pro-diversity. Results of two longitudinal studies involving postgraduate students working in project teams confirm this hypothesis. Analyses further reveal that group identification is positively related to students' desire to stay in their groups and to their information elaboration. Finally, we found evidence for the expected moderated mediation model with indirect effects of subjective diversity on elaboration and the desire to stay, mediated through group identification, moderated by diversity beliefs
    corecore