18 research outputs found

    DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions

    Get PDF
    BACKGROUND: The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. CONCLUSIONS/SIGNIFICANCE: The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity

    Can the growing of transgenic maize threaten protected Lepidoptera in Europe?

    Get PDF
    This material was first presented at the ICCB-ECCB conference in Montpellier, France, 2015.We evaluated whether protected European butterflies can potentially be at risk if transgenic maize is extensively grown in Central Europe. We explored potential consequences of both insect resistant (IR) and herbicide resistant (HR) transgenic maize. IR maize can produce pollen that is toxic to lepidopteran larvae, and this puts butterfly species at possible risk if the presence of young larvae coincides with maize flowering, during which large quantities of maize pollen can be deposited on vegetation. By considering the timing of maize flowering in Europe and the phenology of the protected Lepidoptera species, we found that 31 species had at least one generation where 50% of the larval stage overlapped with maize flowering, and 69 species for which first instar larvae were present during maize pollen shedding. HR maize allows high concentration herbicide treatments on fields without seasonal limitation, which can drastically reduce weed densities. In cases where such weed species are host plants for protected butterflies, reduced host plant/food availability can result, causing population decreases. By using published information, we first identified the important weed species in major maize-growing European countries. Subsequently, we checked whether the host plants of protected Lepidoptera included species that are common maize weeds. We identified 140 protected species having food plants that are common weeds in one or more of the major European maize-growing countries. If HR maize is grown in Europe, there is a potential hazard that their food plants will seriously decline, causing a subsequent decline of these protected species.This is a scientific output of the AMIGA Project, supported by the EC (grant agreement no. 289706).info:eu-repo/semantics/publishedVersio
    corecore