643 research outputs found

    Emerging Therapies in Retinal Diseases: From Gene Therapy to Stem Cell Interventions

    Get PDF
    Retinal disorders pose a serious threat to eye health as they frequently result in blindness and reduced vision. There is hope that the treatment of many illnesses will be revolutionised by emerging medicines, especially gene therapy and stem cell approaches. This study explores the current state of these innovative therapies and how they could affect retinal disorders. By replacing or repairing damaged genes, gene therapy, which uses precise genetic modification, shows promise in treating hereditary retinal problems. Clinical trials have yielded promising results, including improvements in visual function and optimism for patients with illnesses such as choroideremia and Leber congenital amaurosis. Regenerative approaches are provided by stem cell therapies, which restore damaged retinal tissues. Numerous stem cell varieties, including as embryonic and induced pluripotent stem cells, show promise in preclinical research and early-stage clinical trials, suggesting that cell replacement techniques may be a viable means of recovering vision. On the other hand, effective delivery, long-term safety, and ethical issues provide obstacles on the path to clinical application. To fully realise the transformational potential of these medicines, it is imperative to address these obstacles. There is potential for improved visual outcomes, targeted therapies, and personalised care as gene therapy and stem cell interventions advance. These developments highlight the promising future of treating retinal illnesses

    Universal trend of the information entropy of a fermion in a mean field

    Get PDF
    We calculate the information entropy of single-particle states in position-space SrS_{r} and momentum-space SkS_{k} for a nucleon in a nucleus, a Λ\Lambda particle in a hypernucleus and an electron in an atomic cluster. It is seen that SrS_{r} and SkS_{k} obey the same approximate functional form as functions of the number of particles, SrS_{r} ({\rm or} Sk)=a+bN1/3S_{k}) = a+bN^{1/3} in all of the above many-body systems in position- and momentum- space separately. The net information content Sr+SkS_{r}+S_{k} is a slowly varying function of NN of the same form as above. The entropy sum Sr+SkS_{r}+S_{k} is invariant to uniform scaling of coordinates and a characteristic of the single-particle states of a specific system. The order of single-particle states according to Sr+SkS_r +S_k is the same as their classification according to energy keeping the quantum number nn constant. The spin-orbit splitting is reproduced correctly. It is also seen that Sr+SkS_{r}+S_{k} enhances with excitation of a fermion in a quantum-mechanical system. Finally, we establish a relationship of Sr+SkS_r +S_k with the energy of the corresponding single-particle state i.e. Sr+Sk=kln(μE+ν)S_r +S_k = k \ln (\mu E +\nu). This relation holds for all the systems under consideration.Comment: 9 pages, latex, 6 figure

    Information entropy as a measure of the quality of a nuclear density distribution

    Get PDF
    The information entropy of a nuclear density distribution is calculated for a number of nuclei. Various phenomenological models for the density distribution using different geometry are employed. Nuclear densities calculated within various microscopic mean field approaches are also employed. It turns out that the entropy increases on going from crude phenomenological models to more sophisticated (microscopic) ones. It is concluded that the larger the information entropy, the better the quality of the nuclear density distribution. An alternative approach is also examined: the net information content i.e. the sum of information entropies in position and momentum space Sr+SkS_{r}+S_{k}. It is indicated that Sr+SkS_{r}+S_{k} is a maximum, when the best fit to experimental data of the density and momentum distributions is attained.Comment: 12 pages, LaTex, no figures, Int. J. of Mod. Phys. E in pres

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac

    Cooperative AUV Navigation using a Single Maneuvering Surface Craft

    Get PDF
    In this paper we describe the experimental implementation of an online algorithm for cooperative localization of submerged autonomous underwater vehicles (AUVs) supported by an autonomous surface craft. Maintaining accurate localization of an AUV is difficult because electronic signals, such as GPS, are highly attenuated by water. The usual solution to the problem is to utilize expensive navigation sensors to slow the rate of dead-reckoning divergence. We investigate an alternative approach that utilizes the position information of a surface vehicle to bound the error and uncertainty of the on-board position estimates of a low-cost AUV. This approach uses the Woods Hole Oceanographic Institution (WHOI) acoustic modem to exchange vehicle location estimates while simultaneously estimating inter-vehicle range. A study of the system observability is presented so as to motivate both the choice of filtering approach and surface vehicle path planning. The first contribution of this paper is to the presentation of an experiment in which an extended Kalman filter (EKF) implementation of the concept ran online on-board an OceanServer Iver2 AUV while supported by an autonomous surface vehicle moving adaptively. The second contribution of this paper is to provide a quantitative performance comparison of three estimators: particle filtering (PF), non-linear least-squares optimization (NLS), and the EKF for a mission using three autonomous surface craft (two operating in the AUV role). Our results indicate that the PF and NLS estimators outperform the EKF, with NLS providing the best performance.United States. Office of Naval Research (Grant N000140711102)United States. Office of Naval Research. Multidisciplinary University Research InitiativeSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin

    Bilateral spontaneous hemotympanum: Case report

    Get PDF
    BACKGROUND: The most common causes of hemotympanum are therapeutic nasal packing, epistaxis, blood disorders and blunt trauma to the head. Hemotympanum is characterized as idiopathic, when it is detected in the presence of chronic otitis media. A rare case of spontaneous bilateral hemotympanum in a patient treated with anticoagulants is presented herein. CASE PRESENTATION: A 72-year-old male presented with acute deterioration of hearing. In the patient's medical history aortic valve replacement 1 year before presentation was reported. Since then he had been administered regularly coumarinic anticoagulants, with INR levels maintained between 3.4 and 4.0. Otoscopy revealed the presence of bilateral hemotympanum. The audiogram showed symmetrical moderately severe mixed hearing loss bilaterally, with the conductive component predominating. Tympanograms were flat bilaterally with absent acoustic reflexes. A computerized tomography scan showed the presence of fluid in the mastoid and middle ear bilaterally. Treatment was conservative and consisted of a 10-day course of antibiotics, anticongestants and temporary interruption of the anticoagulant therapy. After 3 weeks, normal tympanic membranes were found and hearing had returned to previous levels. CONCLUSION: Anticoagulant intake should be included in the differential diagnosis of hemotympanum, because its detection and appropriate treatment may lead to resolution of the disorder

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Kinetic energy bounds for particles confined in spherically-symmetric traps with non-standard dimensions

    Get PDF
    The kinetic energy of non-relativistic single-particle systems with arbitrary D-dimensional central potentials is found to be bounded from below by means of the orbital hyperangular quantum number, the dimensionality and some radial and logarithmic expectation values of the form langrkrang and langrk (ln r)mrang. Beyond the intrinsic physico-mathematical interest of this problem, we want to contribute to the current development of the theory of independent particles confined in spherically symmetric traps with non-standard dimensions. The latter has been motivated by the recent experimental achievements of the evaporative cooling of dilute (i.e. almost non-interacting) fermions in magnetic traps.We are very grateful for partial support from Junta de Andalucía (under the grants FQM-0207 and FQM-481), Ministerio de Educación y Ciencia (under the project FIS2005-00973), and the European Research Network NeCCA (under the project INTAS-03-51-6637). RGF acknowledges the support of Junta de Andalucía under the program of Retorno de Investigadores a Centros de Investigación Andaluces, and PSM the support of Ministerio de Educación y Ciencia under the program FPU
    corecore