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Computation of Compton profiles in a weak laser field
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A modified numerical scheme for the evaluation of Compton profiles in a weak laser field, based on an
expression by Jain and Tzoar@Phys. Rev. A18, 538~1978!#, is derived. The scheme is based on the reciprocal
form factor and is computationally preferable to the original method. The scheme requires either a numerical
Fourier transformation or the calculation of a one-dimensional integral, both of which are easily achieved. We
focus on the numerical integration, which is readily performed with a Gauss-Chebyshev quadrature. Stable
results may be obtained by avoiding numerical derivatives. Some numerical tests are performed to study the
convergence properties of the old and modified methods. The modified scheme is applied to study some atomic
and molecular systems. The dependence of the profile modulation on the atomic numberZ throughout the
periodic table is established.

PACS number~s!: 34.80.Qb, 32.10.2f, 33.15.2e

I. INTRODUCTION

The inelastic scattering of x rays from bound electrons
may be described in the framework of theimpulse approxi-
mation ~IA ! @1# by means of a projection of the single-
particle momentum densityp(pW ) onto a scattering vector
that is determined by the geometry of the measurement. This
projected quantity is called theCompton profile@2,3# and
plays a pivotal role in linking experimentally accessible scat-
tering cross sections to quantum-mechanical observables:

J~pz!5E E p~px ,py ,pz!dpxdpy . ~1!

If the scattering takes place in the presence of coherent elec-
tromagnetic radiation, for example, in a laser cavity, multi-
photon absorption and emission processes will lead to a
strong modulation of the profile. Jain and Tzoar@4# have
derived a formula for the approximate calculation of such
modulated Compton profiles for bound electrons. The ap-
proximations in their derivation include the aforementioned
impulse approximation, i.e., the momentum transfer in the
process is considered to be significantly higher than the typi-
cal momenta of the target electrons. Additionally, the inten-
sity of the coherent field is supposed to be small enough to
enable the neglect of the impact of the field on the Coulomb
potential in which the bound electrons are moving. As a re-
sult, only the final state of the ejected electron~which is
considered to be a plane wave in the IA! is assumed to be
modified by the presence of the field. The resulting expres-
sion involves an infinite summation over the square of Bessel
functions, which in general may not be performed analyti-
cally. However, a series expansion yields the approximate
expression

JL~q!5 (
n50

`
a2n

22n~n! !2
d2nJ~q!

dq2n , ~2!

whereq denotes the absolute value of the momentum trans-
fer, as the argument of the spherically averaged quantity.
Equation~2! includes only even-ordered derivatives of the
unmodulated profileJ(q), and a field parametera. The lat-
ter is a measure of the strength of the laser field, and is
defined as@5#

a25e2EL
2/\2vL

2 , ~3!

with EL andvL denoting the electric-field amplitude and the
frequency of the laser. Expression~2! requires the evaluation
of derivatives, which may be analytically cumbersome, or
numerically rather unstable. If the field parametera is very
small, only low-order derivatives are necessary, and it was
pointed out@6# that in such cases the measurement of modu-
lated profiles would supply information about the second de-
rivative of the profile~and thus about the momentum den-
sity!.

In the present paper, we recast Eq.~3! in order to arrive at
a simpler way for the calculation of the modulated profile to
full order, in which the evaluation of derivatives is avoided
altogether.

II. ALTERNATIVE EXPRESSION

Let us consider the Fourier-cosine transform of the Comp-
ton profile ~1! in a given direction,

J~q!5
1

pE0
`

B~s!cos~sq!dq. ~4!

The quantityB(s) is called thereciprocal form factor@7#,
and it is of great use in theposition-spaceinterpretation of
Compton profiles and momentum densities@7–10#, because
of its interpretation as an autocorrelation function of one-
particle wave functions describing the system@7,8#. If we
insert Eq.~4! into ~2!, we obtain
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JL~q!5
1

pE0
`

(
n50

`
~21!na2n

22n~n! !2
s2nB~s!cos~sq!ds

5
1

pE0
`

M ~a,s!B~s!cos~sq!ds, ~5!

where we have abbreviated the infinite sum byM (a,s). The
modulated reciprocal form factorBL(s) is therefore a prod-
uct of the unmodulated one with a functionM (a,s), which
depends ona. The function is a hypergeometric series, and
may readily be identified as a zero-order Bessel function,

M ~a,s!5J0~as!. ~6!

The occurrence of the Bessel function is not surprising, since
Bessel functions have served in the derivation of Eq.~2!, and
are of general importance in the calculation of modulated
cross sections in scattering theory@4,11,12#. The Fourier-
cosine transform ofJ0 is known;

E
0

`

J0~as!cos~sq!ds5A~a,q!55
1

Aa22q2
if 0<q,a

` if q5a

0 if a,q.
~7!

The laser-modified Compton profileJL(q) is a convolution
of the unmodified oneJ(q) with this functionA(a,q)

JL~q!5
1

pE J0~as!B~s!cos~sq!ds

5
1

2p2E E E A~a,x!J~y!eis@y2~x2q!#dxdyds

5
1

pE A~a,x!J~x2q!dx5
1

pE21

1 J~q2az!

A12z2
dz.

~8!

The restriction of the functionA(a,q) to a range of 2a and
the symmetry of the Compton profileJ(q) permit the last
step. The final integral in Eq.~8! is very easily evaluated
with the use of a Gauss-Chebyshev quadrature, which has a
weight function of (12z2)21/2.

We therefore propose the calculation of the laser-modified
Compton profile by one of the following two routes:

~i! Explicit or numerical evaluation ofB(s) from the
Compton profile. For experimental profiles, this may be done
in a standard manner by fast Fourier transform methods.
Multiplication by the Bessel functionJ0(as) and back trans-
formation yields the desired modulated profile.

~ii ! Numerical evaluation of the final integral in Eq.~8! by
Gauss-Chebyshev quadrature. Points at the abscissas of that
quadrature may be obtained explicitly for the theoretical
case, or by interpolation from discrete data.

The second route is preferable in the case of the treatment
of theoretical data. Often, only a few evaluations of the un-
modulated profile are required. Higher derivatives do not ex-
plicitly enter the picture. For any given functional form of
J(q), the evaluation of the last integral in Eq.~8! is, of
course, equivalent to the infinite series expansion in Eq.~2!.

III. SOME THEORETICAL EXAMPLES

As expected for a convolution, the impact of a finite laser-
field strengtha on the Compton profile is a broadening. It
was pointed out by Sharmaet al. @6# that if the main contri-
bution comes from the second derivative in Eq.~2! ~as is the
case ifa is sufficiently small!, there is exactly one point
where the modulated and unmodulated profiles coincide: the
inflection point ofJ(q).

As the parametera becomes larger, the neglect of higher-
order terms in the series expansion~2! is not legitimate any-
more, and the influence of the field is more complex. We
consider here the example of the lithium atom in its re-
stricted Hartree-Fock approximation~Fig. 1!. Thex axis de-
notes the decadic logarithm ofa, whereas they axis is the
momentum transferq in \a0

21 . As may be seen from the

FIG. 1. Modulated Compton profile~CP! of the lithium atom.
The CP is plotted as a function of the decadic logarithm of the field
strengtha and of the momentum transferq. Note that the monoto-
nicity of the unmodulated CP follows from its definition, but is not
maintained for the modulated profile. The~atomic! units used are
ea0\

21.

FIG. 2. Unmodulated Compton profiles and modulations in per-
cent for the xenon and cesium atoms. The total profiles~full and
dashed curves! are in~atomic! units ofea0\

21, and normalized to
the number of electrons. The modulations~dotted curves! are in
percent. The fine-dotted horizontal line is a zero grid line.
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figure, for log10(a).21/2, the convolution of the profile
becomes so strong that the monotonicity of the Compton
profile is destroyed. Instead, the modulatedJL(q) exhibits a
local minimum atq50, with the maximum at increasingly
large momenta. To calculateJL(q), one would have to in-
clude at least the fourth derivative ofJ(q) for a ’s in the

vicinity of 1, which is admittedly a large value. ‘‘Reason-
able’’ values are of the order of 0.1, and values ofa which
are too high risk not satisfying the approximations made in
the derivation of the basic expression~2!.

The influence of the coherent light on the profile may
differ greatly from system to system. Figure 2 shows the
total unmodulated profiles, as well as the relative differences
between modulated and unmodulated profiles of the xenon
and the cesium atoms for the small-momentum range. The
field strength parameter is 0.1357 a.u., which corresponds to
a neodymium laser with an amplitude of 33107 V/cm. Al-
though the two atoms differ by only one electron, the influ-
ence of the laser is quite different: Whereas the ‘‘flat’’ profile
of Xe ~full line! is hardly affected, the more peaked one of
Cs ~long-dashed line! shows modulations of more than 5%
~dotted line!.

To gain experience in the importance of higher-order
terms in the series expansion, the example of the hydrogen
atom was considered. In this case, the Compton profile is
proportional to (11q2)23, and the derivatives are easy to
evaluate, albeit somewhat cumbersome. In Figs. 3, we have
computed the ratiouJn(q)u/J(q), whereJn(q) denotes the
nth-order term in the series expansion, i.e., the term propor-
tional to the (2n)th derivative ofJ(q). The x axis is the
momentum transfer, and they axis shows the decadic loga-
rithm of the ratio. The different plots correspond to increas-
ing values ofa. Note that there aren ‘‘spikes’’ for each of
the curves, arising from zeroes in the higher-order deriva-
tives.

For a50.1 @Fig. 3~a!#, terms withn.1 are certainly not
of any great importance. Second-order contributions are of
the order of 1/100%, each term being approximately two
orders of magnitude smaller than the previous one. Note that
the modulation in this case is only in the 1% area to begin
with. However, ifa50.5 @Fig. 3~b!#, the modulation is al-
ready almost as large as the profile itself for some momenta,
and the second- and third-order terms reach values of several
percent. The latter depend on the sixth derivative ofJ(q) and
are certainly not readily calculated for the general case, or

FIG. 3. Relative magnitude of the first five terms in expansion
~2! for the hydrogen atom. Displayed is the decadic logarithm of the
~absolute! ratio R5uJn(q)u/J(q), whereJn denotes the term pro-
portional to the 2nth derivative of the Compton profile. The differ-
ent plots are for different field-strength parametersa; ~a! a50.1,
~b! a50.5, ~c! a51.0.

FIG. 4. Percent Modulation of the peak value of the Compton
profile for the atoms in the periodic table~in the nonrelativistic
Hartree-Fock approximation@14,15#!. The different curves corre-
spond to different values of the field-strength parametera. Note
that the modulation is in all cases negative.
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even for discrete data. Fora51.0 @Fig. 3~c!#, all contribu-
tions up to fifth order~tenth derivative! are of similar impor-
tance for smallq, and all larger than the profile itself. No
calculation of the modulated profile on the basis of Eq.~2!
has any prospect of success in this case. However, integral
~8! is still simple to evaluate~e.g., atq50 with a ten-point
quadrature to an accuracy of 1024%; see Fig. 6!.

IV. ATOMS IN THE PERIODIC TABLE

The impact of a weak coherent field may be considered a
measure of how ‘‘flat’’ the Compton profile is at any point.
The degree of influence of each derivative on this quantity is
a function ofa. As could be seen in the example of the
hydrogen atom, the contributions are of similar size, but al-
ternating sign, ifa is large. For smalla, the second deriva-
tive is the main influence. At the peak,J9(0), the second
derivative is half the peak value@13# of the momentum den-
sity p(0), sothat in first order the modulation of the profile
peak by a laser field is a measure for the number of electrons
at rest.

We have used our integral scheme to calculate the modu-
lations of theCompton peakheight for the atoms of the
periodic table. We use wave functions of the nonrelativistic

relativistic Hartree-Fock type@14,15# for the elements hydro-
gen to uranium to compute modulated peak values with
a ’s ranging from 0.1 to 1.0. The relative modulations in
percent are given in Fig. 4 as a function of the atomic num-
berZ.

The obtained pattern mirrors the periodicity of the ele-
ments quite nicely: The noble gases (Z52,10,18,36,54,86)
are invariably minima, arising from the fact that they exhibit
the lowest momentum densities atp50. There are two other
cases of extremely low modulations: palladium and
platinum, both with unoccupieds shells in the valence.
The maxima are usually exhibited by the alkali
metals or earth-alkali metals (Z53,11,19,37,55,87 or
Z54,12,20,38,56,88). These atoms have occupied diffuses
orbitals in the valence, which contribute to the momentum
density in the form of strong peaks at zero momentum. As
the atomic number increases throughout the shell, the va-
lences orbitals spread out in momentum space, and the value
of p at the origin decreases. The laser modulation ofJ(0)
follows. With increasing fields, some details in the behavior
through the periodic table change. For example, the alkali
metals seem to be maximally influenced for lowa ’s and the
earth alkali metals for larger ones. But the general picture
remains the same throughout, and only the magnitude in-
creases. Generally, lighter elements seem to be more

FIG. 5. Modulated spherically averaged Compton profiles based on experimentally determined unmodulated ones. The different curves
correspond to different field-strength parameters~see legend!. The profiles are represented by Lorentzian fits~see text!. ~a! helium, ~b!
hydrogen,~c! water,~d! methane. Atomic units (ea0\

21) are used.
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strongly affected~up to almost 70%) than heavier ones
~around 30240 % for a51). Other local minima and
maxima may usually be explained on the grounds of the
electron configuration.

V. ‘‘EXPERIMENTAL’’ PROFILES

The treatment of experimental profiles requires some spe-
cific considerations. Since the data are discrete, derivatives
as needed in Eq.~2! are not readily available. Interpolation
of the data is usually done linearly to avoid error correlation,
and second derivatives may not be obtained that way. If cu-
bic splines are used for interpolation, only second derivatives
are available, and the function exhibits discontinuities in the
third derivative. It is, however, always possible to approxi-
mately evaluate the integral above, even if only linear inter-
polation is used. The results are of course not ‘‘exact’’ in
either case.

In the practical application, the most likely strategy would
be to build the multiplication by the Bessel function@see Eq.
~5!# into the standard calculation of Fourier transforms of the
experimental profile~e.g., for purposes of filtering!,

BL~s!52E
0

`

JL~q!cos~sq!dq5J0~as!B~s!. ~9!

We have chosen a simpler way to calculate some modulated
profiles from experimental ones, by employing least-squares
fits to a simple functional form from the literature. The cases
presented here are sums of up to five terms of the form
an /@11(q/jn)

2#22n21, wherean andjn are linear and non-
linear least-squares parameters, respectively. The fits em-
ployed here are for the systems He and H2 @16# @Figs. 5~a!
and 5~b!#, H2O @17,18# @Fig. 5~c!#, and CH4 @19# @Fig. 5~d!#.
The treatment, based on Gauss-Chebyshev integration, is, of
course, equivalent to the explicit evaluation of derivatives of
these functional forms, and the results are only as accurate as
the fits on which they are based.

Figures 5 display the profiles obtained by variation of the
parametera in a range between 0 and 1 in steps of 0.2. In all
cases, the profiles becomes broader asa increases. The de-
gree to which the intersection between the unmodulated and
modulated profiles spreads inq is a measure for the impor-
tance of higher-order terms in the series expansion. For small
a, the modulation may be expected to be dominated by the
second derivative, and for the water system@Fig. 5~c!# all

FIG. 6. Logarithm to the base 10 of the relative accuracy of the modulated profile as a function of the order of the Gauss-Chebyshev
quadrature employed. The numbers on they axis are an approximate measure for the number of correct significant figures obtainable from
numerical quadrature. The different curves denote different field-strength parametersa. ~a! and ~b! correspond to Gaussian line shapes at
q50 andq52\a0

21; ~c! and ~d! are the same for a hydrogenic Lorentzian.
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curves pass through more or less one point. This means that
for water, the approximation by the first term would be fairly
appropriate. For the other systems, however, this is not the
case. Especially H2 exhibits a wide spread of the intersection
points, andJ(q) even loses its monotonicity for largera.
However, the starting approximation of a weak laser field is
not satisfied anymore in those cases.

VI. NUMERICAL CONSIDERATIONS: CONVERGENCE

To obtain information about the accuracy of the present
method and its numerical reliability, we used two test func-
tions for a convergence study. The first one was a simple
unnormalized Gauss functionJ(q)5e2q2. For this, deriva-
tives to arbitrary order are readily available in the form of the
Hermite polynomials, and therefore the convergence of the
original equation~2! to the correct value@calculated employ-
ing Eq. ~8!# may be studied.

As expected, for small values ofa'0.1, the modulation
is dominated by the second derivative, and four significant
figures are obtained already from the first term~proportional
to the second derivative!. Machine accuracy~double preci-
sion! requires only six terms. However, asa increases
(a'0.5), six terms can only produce a single-precision
agreement, and with even larger~and unrealistic! a ’s ~of the
order of 1.0), single-precision agreement requires ten terms,
i.e., the 20th derivative. For general cases, even the fourth
derivative, which is necessary for realistica values, is cum-
bersome to evaluate analytically, and inaccurate numerically.

Our integration scheme@Eq. ~8!# may be checked on the
same test system. We have done so by stepwise increasing
the order of the Chebyshev quadrature, until the difference
between two consecutive calculations was a double-precision
zero. The resulting value was used as reference, and the rela-
tive errors of the previous calculations were computed. Their
decadic logarithms are given in Figs. 6 as functions of the
quadrature order. Errors smaller than 10215 were artificially
put to 10215, which was assumed to be the limit of arith-
metic accuracy inREAL*8. For the peak valueq50, the con-
vergence is very smooth and very fast. Even fora51.0, a
12-point quadrature produces machine-accuracy. A patho-
logical value such asa52 may be treated with 18 points.
The same holds forq52, although the convergence is
slightly more erratic. Realistic values ofa can be treated
with ten-point quadratures without loss of accuracy.

Since a Gaussian line shape is not particularly realistic,
we performed the same convergence test for the function
J(q)5(11q2)23, which is proportional to the profile of the
hydrogen atom. The results are shown in Figs. 6~c! and 6~d!.
The convergence is noticeably slower, particularly for high
values ofa. For the peak value ata51, a 20-point quadra-
ture only achieves 13 digits of accuracy, and fora52, only
six significant figures may be obtained. For realistic values,
however, a ten-point quadrature still achieves machine accu-
racy. Forq52, the convergence is quicker, but less smooth;
again, a ten-point quadrature should serve the requirements
for most cases.

VII. CONCLUSIONS

A convolution integral on a finite range may replace an
existing approximate expression for the laser-modulated

Compton profile in terms of even-ordered derivatives. The
modified expression is both quickly convergent if treated
with a Gauss-Chebyshev quadrature, and numerically stable,
and therefore preferable for the treatment of discrete data and
in cases where the analytical evaluation of derivatives is
cumbersome and expensive.

The modulation of theoretical Compton profiles with
varying strength of the coherent field was studied for some
systems, and its dependence on the atomic numberZ through
the periodic table was established. It was shown that systems
with newly ~half! filled s-valence shells show particularly
strong modulation, whereas rare gases and the transition met-
als palladium and platinum are only very weakly affected.
Experimentally derived fits were used to arrive at modulated
Compton profiles that could be directly compared with~up to
now not available! experimental data.

Finally, a few remarks about the validity of the approxi-
mations made in expression~2!, and its impact on the appli-
cation of the equivalent form~8! are in order. The formula is,
in addition to the impulse approximation, based on the as-
sumption of a homogeneous electric field on the spatial and
temporal scale of the scattering event. Furthermore any in-
fluence of the coherent light on the target system is ne-
glected, and only the modification of the final plane-wave
state is taken into consideration. These assumptions require a
field of low intensity, and are made even more severe by the
exclusion of higher than first-order effects in the field fre-
quency at a later point in the derivation@see Eqs.~18! and
~19! in @4##. With all this kept in mind, one might question if
a calculation of the modulated profile to full order is desir-
able at all. As we have seen, if the field is very weak, higher-
order terms are hardly noticeable@see, for example, Fig.
3~a!#, and certainly outside the precision of even modern
experiments~which should lie in the range of fractions of a
percent in favorable cases!. Even the first-order terms are
small enough to warrant some suspicion about the relative
size of the error inherent in the starting approximations. For
larger values of the field-strength parameter, we obtain sig-
nificant contributions from higher-order terms@e.g.,
Fig.3~b!#, but the validities of the Taylor-series expansion
and the series truncation in@4# are questionable at best. How
questionable can ultimately only be assessed experimentally.
We can speculate about an intermediate range where higher-
order terms play a role, but the Jain-Tzoar approximation
may still be used. However, a quantitative study of this ques-
tion is outside the scope of this paper. It is not our intent to
question ~or confirm! the validity of the approximations
made in Eqs.~2! and therefore~8!. However, we feel that if
such an expression is used for calculation, its truncation~in
addition to all the approximations invoked already! should
be avoided. It is certainly more elegant and convenient to
evaluate it to full order with less computational effort than it
takes to calculate only its first-order term directly. Its physi-
cal relevance is not affected by this in either a positive or
negative sense.
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