5 research outputs found

    Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology

    Get PDF
    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite- borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.JRC.H.5-Land Resources Managemen

    Generation length for mammals

    No full text
    Generation length (GL) is defined as the average age of parents of the current cohort, reflecting the turnover rate of breeding individuals in a population. GL is a fundamental piece of information for population ecology as well as for measuring species threat status (e.g. in the IUCN Red List). Here we present a dataset including GL records for all extant mammal species (n=5427). We first reviewed all data on GL published in the IUCN Red List database. We then calculated a value for species with available reproductive parameters (reproductive life span and age at first reproduction). We assigned to missing-data species a mean GL value from congeneric or confamilial species (depending on data availability). Finally, for a few remaining species, we assigned mean GL values from species with similar body mass and belonging to the same order. Our work provides the first attempt to complete a database of GL for mammals; it will be an essential reference point for all conservation-related studies that need pragmatic information on species GL, such as population dynamics and applications of the IUCN Red List assessment

    Data from: Generation length for mammals

    No full text
    Generation length (GL) is defined as the average age of parents of the current cohort, reflecting the turnover rate of breeding individuals in a population. GL is a fundamental piece of information for population ecologist as well as for measuring species threat status (e.g. in the IUCN Red List). Here we present a dataset including GL records for all extant mammal species (n=5426). We first reviewed all data on GL published in the IUCN Red List database. We then calculated a value for species with available reproductive parameters (reproductive life span and age at first reproduction). We assigned to missing-data species a mean GL value from congeneric or confamilial species (depending on data availability). Finally, for a few remaining species, we assigned mean GL values from species with similar body mass and belonging to the same order. Our work provides the first attempt to complete a database of GL for mammals; it will be an essential reference point for all conservation-related studies that need pragmatic information on species GL, such as population dynamics and applications of the IUCN Red List assessment
    corecore