15 research outputs found

    Alkaloids Analysis of Habranthus cardenasianus (Amaryllidaceae), Anti-Cholinesterase Activity and Biomass Production by Propagation Strategies

    Get PDF
    Plants in the Amaryllidaceae family synthesize a diversity of bioactive alkaloids. Some of these plant species are not abundant and have a low natural multiplication rate. The aims of this work were the alkaloids analysis of a Habranthus cardenasianus bulbs extract, the evaluation of its inhibitory activity against cholinesterases, and to test several propagation strategies for biomass production. Eleven compounds were characterized by GC-MS in the alkaloid extract, which showed a relatively high proportion of tazettine. The known alkaloids tazettine, haemanthamine, and the epimer mixture haemanthidine/6-epi-haemanthidine were isolated and identified by spectroscopic methods. Inhibitory cholinesterases activity was not detected. Three forms of propagation were performed: bulb propagation from seed, cut-induced bulb division, and micropropagated bulbs. Finally, different imbibition and post-collection times were evaluated in seed germination assays. The best propagation method was cut-induced bulb division with longitudinal cuts into quarters (T1) while the best conditions for seed germination were 0-day of post-collection and two days of imbibition. The alkaloids analyses of the H. cardenasianus bulbs showed that they are a source of anti-tumoral alkaloids, especially pretazettine (tazettine) and T1 is a sustainable strategy for its propagation and domestication to produce bioactive alkaloids. Keywords: Amaryllidaceae; bioactive alkaloids; GC-MS; propagation methods; biomass productio

    The Anti-Cholinesterase Potential of Fifteen Different Species of Narcissus L. (Amaryllidaceae) Collected in Spain

    Get PDF
    Narcissus L. is a renowned plant genus with a notable center of diversity and is primarily located in the Mediterranean region. These plants are widely recognized for their ornamental value, owing to the beauty of their flowers; nonetheless, they also hold pharmacological importance. In Europe, pharmaceutical companies usually use the bulbs of Narcissus pseudonarcissus cv. Carlton to extract galanthamine, which is one of the few medications approved by the FDA for the palliative treatment of mild-to-moderate symptoms of Alzheimer’s disease. The purpose of this study was to evaluate the potential of these plants in Alzheimer’s disease. The alkaloid extract from the leaves of different species of Narcissus was obtained by an acid-base extraction work-up -procedure. The biological potential of the samples was carried out by evaluating their ability to inhibit the enzymes acetyl- and butyrylcholinesterase (AChE and BuChE, respectively). The species N. jacetanus exhibited the best inhibition values against AChE, with IC50 values of 0.75 ± 0.03 µg·mL−1, while N. jonquilla was the most active against BuChE, with IC50 values of 11.72 ± 1.15 µg·mL−1.Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED, 223RT0140)

    Antibacterial activity of phenylpropanoids derived from cinnamic acid

    Get PDF
    In this work, we present antibacterial activity of a 22 phenylpropanoids derived from cinnamic acid, recently reported as antifungal agents by our group. Some of these compounds are commercial, others are natural products and some of them were obtained by synthesis. Antibacterial activity was determined in two stages. At first, a screening was made by an easy, economic and fast assay using a commercial lyophilized of Gram (+) bacteria. Compounds that showed activity at the screening were tested against Gram (+) and Gram (-) pathogens.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Dispersion and release of embelin from electrospun biodegradable, polymeric, membranes

    Get PDF
    In this work, microfiber meshes containing embelin, a poorly water-soluble bioactive agent, were prepared by solubilizing embelin in a biodegradable and biocompatible polymer matrix of poly(ε-caprolactone) (PCL). Plain or drug-loaded, highly porous, fibrous membranes with a high area-to-volume ratio were obtained by electrospinning. Non-woven microfibrous meshes were formed by uniform bead-free fibers with a mean diameter of 1.2 μm. Non-porous films were obtained by solution casting, and were used for comparison. The drug-loading content of the prepared systems was appropriate for topical applications. The thermal properties revealed that the crystallinity of embelin significantly decreased, the drug having almost completely dissolved in the PCL fibers. The in situ bioavailability of embelin, an antimycotic agent, is an important aspect to consider in topical drug applications. The drug-loaded systems presented different contact areas with the biological environment. When comparing the ability to expose embelin with the biological environment of the prepared systems, drug-loaded fibrous scaffolds showed a higher bioavailability of the bioactive agent because of an increase by 86% in the area-to-volume ratio, providing an effective area per unit mass that was 5.8-fold higher than that of the film. For the meshes, 90% embelin release was observed after 12h of exposure to phosphate-buffered saline, whereas for the films a comparable level of release occurred only after 72h.Fil: Cortez Tornello, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación En Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Feresin, Gabriela Egly. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Tapia, Alejandro. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; ArgentinaFil: Veiga, Itiara G.. Universidade Estadual de Campinas; BrasilFil: Moraes, Ângela M.. Universidade Estadual de Campinas; BrasilFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación En Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Cuadrado, Teresita Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación En Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentin

    UHPLC-MS Metabolome Fingerprinting: The Isolation of Main Compounds and Antioxidant Activity of the Andean Species Tetraglochin ameghinoi (Speg.) Speg.

    Get PDF
    The seriated extracts of petroleum ether (PE-E), dichloromethane (DCM-E) and methanol extracts (MeOH-E) from the aerial parts of the native South American plant Tetraglochin ameghinoi (Rosaceae), were evaluated regarding their antioxidant and antibacterial activities. The antioxidant properties were evaluated by free radical scavenging methods (DPPH and TEAC), ferric-reducing antioxidant power (FRAP) and lipoperoxidation in erythrocytes (LP), while the antibacterial activity was performed against Gram-positive and Gram-negative bacteria according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The chemical and biological analyses of this plant are very important since this bush is currently used in traditional medicine as a cholagogue and digestive. The polar MeOH-E showed the highest antioxidant activities (17.70 µg/mL in the DPPH assay, 381.43 ± 22.38 mM TE/g extract in the FRAP assay, 387.76 ± 91.93 mg TE/g extract in the TEAC assay and 93.23 + 6.77% in the LP assay) and it was selected for chromatographic isolation of its components. These components were found to be four acetophenones, including the new phloracetophenone glucoside: 4′,6′,-dihydroxy-2′-O-(6″-acetyl)-β-d-glucopyranosylacetophenone or IUPAC name: (6-(2-acetyl-3,5-dihydroxyphenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl acetate, whose structure was elucidated by NMR and MS methods. In addition, twenty-six compounds, including five of these acetophenone derivatives, two sugars, six flavonoids, eleven phenolic acids and two triterpenes, were identified based on UHPLC-OT-MS and PDA analysis on the MeOH-E. The results support the medicinal use of the plant

    Antibacterial and Leishmanicidal Activity of Bolivian Propolis

    No full text
    The antimicrobial activity of Bolivian propolis was assessed for the first time on a panel of bacteria and two endemic parasitic protozoa. Ten samples of Bolivian propolis and their main constituents were tested using the micro-broth dilution method against 11 bacterial pathogenic strains as well as against promastigotes of Leishmania amazonensis and L. braziliensis using the XTT-based colorimetric method. The methanolic extracts showed antibacterial effect ranging from inactive (MICs >1000 μg ml(-1) ) to low (MICs 250-1000 μg ml(-1) ), moderate (62∙5-125 μg ml(-1) ) and high antibacterial activity (MIC 31.2 μg ml(-1) ), according to the collection place and chemical composition. The most active samples towards Leishmania species were from Cochabamba and Tarija, with IC50 values of 12∙1 and 7∙8, 8∙0 and 10∙9 μg ml(-1) against L. amazonensis and L. brasiliensis, respectively. The results show that the best antibacterial and antiprotozoal effect was observed for some phenolic rich propolis.Fil: Nina, N.. Universidad de Talca; ChileFil: Lima, Beatriz Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feresin, Gabriela Egly. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Giménez, A.. Universidad Mayor de San Andrés; BoliviaFil: Capusiri, E. S.. Universidad Mayor de San Andrés; BoliviaFil: Schmeda Hirschmann, G.. Universidad de Talca; Chil

    Wild Argentinian Amaryllidaceae, a New Renewable Source of the Acetylcholinesterase Inhibitor Galanthamine and Other Alkaloids

    Get PDF
    The Amaryllidaceae family is well known for its pharmacologically active alkaloids. An important approach to treat Alzheimer's disease involves the inhibition of the enzyme acetylcholinesterase (AChE). Galanthamine, an Amaryllidaceae alkaloid, is an effective, selective, reversible, and competitive AchE inhibitor. This work was aimed at studying the alkaloid composition of four wild Argentinian Amarillydaceae species for the first time, as well as analyzing their inhibitory activity on acetylcholinesterase. Alkaloid content was characterized by means of GC-MS analysis. Chloroform basic extracts from Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina and Zephyranthes filifolia collected in the Argentinian Andean region all contained galanthamine, and showed a strong AChE inhibitory activity (IC50 between 1.2 and 2 µg/mL). To our knowledge, no previous reports on alkaloid profiles and AChEIs activity of wild Argentinian Amarillydaceae species have been publisihed. The demand for renewable sources of industrial products like galanthamine and the need to protect plant biodiversity creates an opportunity for Argentinian farmers to produce such crops

    <i>Adesmia pinifolia,</i> a Native High-Andean Species, as a Potential Candidate for Phytoremediation of Cd and Hg

    No full text
    This study highlights Adesmia pinifolia, a native high-Andean species, as a potential candidate for the phytoremediation of soils contaminated with Cd and Hg. In this work, a semi-hydronic assay with different doses of Cd (3, 4.5, and 6 mg L−1) and Hg (0.8, 1.2, and 1.6 mg L−1) was analysed to evaluate the establishment of plants, antioxidant defence systems, oxidative stress, and the ability to accumulate heavy metals. The results indicate high survival rates (>80%); however, Cd significantly reduced shoot and root biomass, while Hg increased root biomass with the 1.6 mg L−1 treatment. Cd and Hg tend to accumulate more in roots (2534.24 µg/g and 596.4 µg g−1, respectively) compared to shoots (398.53 µg g−1 and 140.8 µg g−1, respectively). A significant decrease in the bioconcentration factor of Cd and Hg in roots was observed as metal levels increased, reaching the maximum value at 3 mg L−1 (805.59 ± 54.38) and 0.8 mg L−1 (804.54 ± 38.09). The translocation factor, <1 for both metals, suggests that translocation from roots to shoots is limited. An overproduction of reactive oxygen species (ROS) was observed, causing lipid peroxidation and oxidative damage to plant membranes. Tolerance strategies against subsequent toxicity indicate that enhanced glutathione reductase (GR) activity and glutathione (GSH) accumulation modulate Cd and Hg accumulation, toxicity, and tolerance

    Antiparasitic Activity of <i>Hippeastrum</i> Species and Synergistic Interaction between Montanine and Benznidazole against <i>Trypanosoma cruzi</i>

    Get PDF
    Background: Hippeastrum species have a wide range of biological properties. In Argentina, this genus comprises ten widely distributed species. Purpose: To evaluate the antiparasitic and anticholinesterase activities and chemical profiles of seven Argentinean Hippeastrum species and determine the synergism between the major isolated alkaloid—montanine—and benznidazole in anti-Trypanosoma cruzi activity. Methods: The antiparasitic activity was evaluated through antiproliferative and viability assays against T. cruzi epimastigotes. Synergism assays were performed using the Chou–Talalay method. AChE and BuChE inhibitory activities were also assessed. The alkaloid composition was obtained using GC-MS analysis. Results: All extracts showed strong growth inhibition of T. cruzi epimastigote proliferation. The extracts from H. aglaiae, H. aulicum, and H. hybrid stand out for their potent and total growth inhibition, which was comparable to benznidazole. The H. reticulatum extract showed strong Acetylcholinesterase (AChE) inhibitory activities, while five species showed moderate Butyrylcholinesterase (BuChE) inhibition. Fifteen alkaloids were identified by means of GC-MS. Regarding the synergism assessment, the highest synergistic effect was obtained from the combination of montanine and benznidazole. Conclusion: Hippeastrum species bulb extracts from Argentina were shown to be a good source of antiparasitic alkaloids and cholinesterase inhibitors. The synergism between montanine and benznidazole emerges as a potential combination for future studies to treat Chagas disease
    corecore