12,474 research outputs found

    Screening of charged spheroidal colloidal particles

    Full text link
    We study the effective screened electrostatic potential created by a spheroidal colloidal particle immersed in an electrolyte, within the mean field approximation, using Poisson--Botzmann equation in its linear and nonlinear forms, and also beyond the mean field by means of Monte Carlo computer simulation. The anisotropic shape of the particle has a strong effect on the screened potential, even at large distances (compared to the Debye length) from it. To quantify this anisotropy effect, we focus our study on the dependence of the potential on the position of the observation point with respect with the orientation of the spheroidal particle. For several different boundary conditions (constant potential, or constant surface charge) we find that, at large distance, the potential is higher in the direction of the large axis of the spheroidal particle

    USE OF INHALANT ANESTHETICS IN THREE SNAKE SPECIES

    Get PDF
    Different snake species respond differently to various anesthetic agents. Hence, an anesthetic procedure developed for one species cannot necessarily be safely transferred to another species. The goal of this paper is to summarize our experience using inhalant anesthetics on three snake species, including both procedures that were successful and those we found to be less satisfactory. We found isoflurane delivered with a precision vaporizer to be the best agent to anesthetize black rat snakes (Elaphe o. obsoleta). Sex and mass did not seem to affect induction times in black rat snakes, but larger female rat snakes recovered faster from anesthesia than smaller females. Halothane delivered in the open method provided consistent anesthesia in northern water snakes (Nerodia s. sipedon), although it caused some mortality and should not be used on debilitated patients. Halothane delivered with a precision vaporizer may be used to anesthetize eastern massasauga rattlesnakes (Sistrurus c. catenatus). However, care must be taken to prevent mortality resulting from anesthetic overdose. Sex and mass had no effect on induction and recovery times in the rattlesnakes, but stressed animals require longer induction and recovery times

    Low-scale inflation in a model of dark energy and dark matter

    Get PDF
    We present a complete particle physics model that explains three major problems of modern cosmology: inflation, dark matter and dark energy, and also gives a mechanism for leptogenesis. The model has a new gauge group SU(2)ZSU(2)_Z that grows strong at a scale Λ103\Lambda\sim 10^{-3} eV. We focus on the inflationary aspects of the model. Inflation occurs with a Coleman-Weinberg potential at a low scale, down to \sim 6\times 10^5\gev, being compatible with observational data.Comment: 5 two-column pages, RevTex4; two reference added and minor changes made in the text; published in JCA

    Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams

    Get PDF
    We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam’s topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result

    A New Test of the Einstein Equivalence Principle and the Isotropy of Space

    Get PDF
    Recent research has established that nonsymmetric gravitation theories like Moffat's NGT predict that a gravitational field singles out an orthogonal pair of polarization states of light that propagate with different phase velocities. We show that a much wider class of nonmetric theories encompassed by the χg\chi g formalism predict such violations of the Einstein equivalence principle. This gravity-induced birefringence of space implies that propagation through a gravitational field can alter the polarization of light. We use data from polarization measurements of extragalactic sources to constrain birefringence induced by the field of the Galaxy. Our new constraint is 10810^8 times sharper than previous ones.Comment: 21 pages, Latex, 3 Postscript figure

    Description beyond the mean field approximation of an electrolyte confined between two planar metallic electrodes

    Full text link
    We study an electrolyte confined in a slab of width WW composed of two grounded metallic parallel electrodes. We develop a description of this system in a low coupling regime beyond the mean field (Poisson--Boltzmann) approximation. There are two ways to model the metallic boundaries: as ideal conductors in which the electric potential is zero and it does not fluctuate, or as good conductors in which the average electric potential is zero but the thermal fluctuations of the potential are not zero. This latter model is more realistic. For the ideal conductor model we find that the disjoining pressure is positive behaves as 1/W31/W^3 for large separations with a prefactor that is universal, i.e. independent of the microscopic constitution of the system. For the good conductor boundaries the disjoining pressure is negative and it has an exponential decay for large WW. We also compute the density and electric potential profiles inside the electrolyte. These are the same in both models. If the electrolyte is charge asymmetric we find that the system is not locally neutral and that a non-zero potential difference builds up between any electrode and the interior of the system although both electrodes are grounded.Comment: 16 pages, 5 figures, added a new appendix B and a discussion on ideal conductors vs. good conductor

    SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Get PDF
    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established

    The role of angular momentum in the construction of electromagnetic multipolar fields

    Get PDF
    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions originating from different derivations can be difficult to compare. Some of the derivations of the multipolar solutions do not explicitly show their relation to the angular momentum operators, thus hiding important properties of these solutions. In this article, the relation between two of the most common derivations of this set of solutions is explicitly shown and their relation to the angular momentum operators is exposed.Comment: 13 pages, 2 figure

    Testing the Equivalence Principle by Lamb shift Energies

    Get PDF
    The Einstein Equivalence Principle has as one of its implications that the non-gravitational laws of physics are those of special relativity in any local freely-falling frame. We consider possible tests of this hypothesis for systems whose energies are due to radiative corrections, i.e. which arise purely as a consequence of quantum field theoretic loop effects. Specifically, we evaluate the Lamb shift transition (as given by the energy splitting between the 2S1/22S_{1/2} and 2P1/22P_{1/2} atomic states) within the context of violations of local position invariance and local Lorentz invariance, as described by the THϵμT H \epsilon\mu formalism. We compute the associated red shift and time dilation parameters, and discuss how (high-precision) measurements of these quantities could provide new information on the validity of the equivalence principle.Comment: 40 pages, latex, epsf, 1 figure, final version which appears in Physical Review

    Multi-site observations of Delta Scuti stars 7 Aql and 8 Aql (a new Delta Scuti variable): The twelfth STEPHI campaign in 2003

    Full text link
    We present an analysis of the pulsation behaviour of the Delta Scuti stars 7 Aql (HD 174532) and 8 Aql (HD 174589) -- a new variable star -- observed in the framework of STEPHI XII campaign during 2003 June--July. 183 hours of high precision photometry were acquired by using four-channel photometers at three sites on three continents during 21 days. The light curves and amplitude spectra were obtained following a classical scheme of multi-channel photometry. Observations in different filters were also obtained and analyzed. Six and three frequencies have been unambiguously detected above a 99% confidence level in the range 0.090 mHz--0.300 mHz and 0.100 mHz-- 0.145 mHz in 7 Aql and 8 Aql respectively. A comparison of observed and theoretical frequencies shows that 7 Aql and 8 Aql may oscillate with p modes of low radial orders, typical among Delta Scuti stars. In terms of radial oscillations the range of 8 Aql goes from n=1 to n=3 while for 7 Aql the range spans from n=4 to n=7. Non-radial oscillations have to be present in both stars as well. The expected range of excited modes according to a non adiabatic analysis goes from n=1 to n=6 in both stars.Comment: 8 pages, 7 fugures, 5 tables, accepted for publication in Astronomical Journa
    corecore