1,606 research outputs found

    Counting irregular multigraphs

    Get PDF
    AbstractGagliardi et al. (1996, unpublished manuscript) defined an irregular multigraph to be a loopless multigraph with degree sequence n, n − 1,…, 1, and they posed the problem of determining the number of different irregular multigraphs fn on n vertices. In Gagliardi et al. (1996) they showed that if n ≡ 0 or 3 (mod 4) then fn > n − 1. In this note our aim is to show that there are constants 1 < c1 < c2 and n0 > 0 such that if n ⩾ n0 and n ≡ 0 or 3 (mod 4) then (c1)n2 < fn < (c2)n2. Indeed, we show that c1 = 1.19 and c2 = 1.65 can be chosen

    Seismic modeling using the frozen Gaussian approximation

    Full text link
    We adopt the frozen Gaussian approximation (FGA) for modeling seismic waves. The method belongs to the category of ray-based beam methods. It decomposes seismic wavefield into a set of Gaussian functions and propagates these Gaussian functions along appropriate ray paths. As opposed to the classic Gaussian-beam method, FGA keeps the Gaussians frozen (at a fixed width) during the propagation process and adjusts their amplitudes to produce an accurate approximation after summation. We perform the initial decomposition of seismic data using a fast version of the Fourier-Bros-Iagolnitzer (FBI) transform and propagate the frozen Gaussian beams numerically using ray tracing. A test using a smoothed Marmousi model confirms the validity of FGA for accurate modeling of seismic wavefields.Comment: 5 pages, 8 figure

    High-Dispersion Optical Spectra of Nearby Stars Younger Than The Sun

    Get PDF
    We present high-dispersion (R~16,000) optical (3900-8700 A) spectra of 390 stars obtained with the Palomar 60 inch telescope. The majority of stars observed are part of the Spitzer Legacy Science Program "The Formation and Evolution of Planetary Systems." Through detailed analysis we determine stellar properties for this sample, including radial and rotational velocities, Li I 6708 and Ha equivalent widths, the chromospheric activity index R'_HK, and temperature- and gravity-sensitive line ratios. Several spectroscopic binaries are also identified. From our tabulations, we illustrate basic age- and rotation-related correlations among measured indices. One novel result is that Ca II chromospheric emission appears to saturate at vsini values above ~30 km/s, similar to the well established saturation of X-rays that originate in the spatially separate coronal regions.Comment: 1 electronic table; published in the Astronomical Journa

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    In-plane Magnetoconductivity of Si-MOSFET's: A Quantitative Comparison between Theory and Experiment

    Full text link
    For densities above n=1.6×1011n=1.6 \times 10^{11} cm2^{-2} in the strongly interacting system of electrons in two-dimensional silicon inversion layers, excellent agreement between experiment and the theory of Zala, Narozhny and Aleiner is obtained for the response of the conductivity to a magnetic field applied parallel to the plane of the electrons. However, the Fermi liquid parameter F0σ(n)F_0^\sigma(n) and the valley splitting ΔV(n)\Delta_V(n) obtained from fits to the magnetoconductivity, although providing qualitatively correct behavior (including sign), do not yield quantitative agreement with the temperature dependence of the conductivity in zero magnetic field. Our results suggest the existence of additional scattering processes not included in the theory in its present form

    Electron-electron interaction at decreasing kFlk_Fl

    Full text link
    The contribution of the electron-electron interaction to conductivity is analyzed step by step in gated GaAs/InGaAs/GaAs heterostructures with different starting disorder. We demonstrate that the diffusion theory works down to kFl1.52k_F l\simeq 1.5-2, where kFk_F is the Fermi quasimomentum, ll is the mean free paths. It is shown that the e-e interaction gives smaller contribution to the conductivity than the interference independent of the starting disorder and its role rapidly decreases with kFlk_Fl decrease.Comment: 5 pages, 6 figure

    Multiperiodicity, modulations and flip-flops in variable star light curves I. Carrier fit method

    Full text link
    The light curves of variable stars are commonly described using simple trigonometric models, that make use of the assumption that the model parameters are constant in time. This assumption, however, is often violated, and consequently, time series models with components that vary slowly in time are of great interest. In this paper we introduce a class of data analysis and visualization methods which can be applied in many different contexts of variable star research, for example spotted stars, variables showing the Blazhko effect, and the spin-down of rapid rotators. The methods proposed are of explorative type, and can be of significant aid when performing a more thorough data analysis and interpretation with a more conventional method.Our methods are based on a straightforward decomposition of the input time series into a fast "clocking" periodicity and smooth modulating curves. The fast frequency, referred to as the carrier frequency, can be obtained from earlier observations (for instance in the case of photometric data the period can be obtained from independently measured radial velocities), postulated using some simple physical principles (Keplerian rotation laws in accretion disks), or estimated from the data as a certain mean frequency. The smooth modulating curves are described by trigonometric polynomials or splines. The data approximation procedures are based on standard computational packages implementing simple or constrained least-squares fit-type algorithms.Comment: 14 pages, 23 figures, submitted to Astronomy and Astrophysic

    A Fully Tunable Single-Walled Carbon Nanotube Diode

    Full text link
    We demonstrate a fully tunable diode structure utilizing a fully suspended single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward bias can be continuously tuned up to 4.3 V by controlling gate voltages, which is ~6 times the nanotube bandgap energy. Furthermore, the same device design can be configured into a backward diode by tuning the band-to-band tunneling current with gate voltages. A nanotube backward diode is demonstrated for the first time with nonlinearity exceeding the ideal diode. These results suggest that a tunable nanotube diode can be a unique building block for developing next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure

    Asymptotically stable phase synchronization revealed by autoregressive circle maps

    Full text link
    A new type of nonlinear time series analysis is introduced, based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying auto-regressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, Invertibility enforcing Phase Space map (FIPS map) is well suited to detect conditional asymptotic stability of coupled phases. This rather general synchronization criterion unites two existing generalisations of the old concept and can successfully be applied e.g. to phases obtained from ECG and airflow recordings characterizing cardio-respiratory interaction.Comment: PDF file, 232 KB, 24 pages, 3 figures; cheduled for Phys. Rev. E (Nov) 200
    corecore