96 research outputs found

    Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology

    Get PDF
    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: -64.4 ± 32.8 vs. -59.4 ± 34.2 × 10(2) W·m(-2)·s(-1), CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = -0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P < 0.01 vs. rest) and cumulative BDW -19.2 ± 12.6 × 10(3) W·m(-2)·s(-1) (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Triptans and troponin: a case report

    Get PDF
    This case report describes for the first time acute coronary syndrome in a 67-year old patient after oral intake of naratriptan for migraine. So far in the literature, only sumatriptan, zolmitriptan and frovatriptan have been described to cause acute coronary syndromes

    P19 H-Ras Induces G1/S Phase Delay Maintaining Cells in a Reversible Quiescence State

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Three functional c-ras genes, known as c-H-ras, c-K-ras, and c-N-ras, have been largely studied in mammalian cells with important insights into normal and tumorigenic cellular signal transduction events. Two K-Ras mRNAs are obtained from the same pre-mRNA by alternative splicing. H-Ras pre-mRNA can also be alternatively spliced in the IDX and 4A terminal exons, yielding the p19 and p21 proteins, respectively. However, despite the Ras gene family’s established role in tumorigenic cellular signal transduction events, little is known about p19 function. Previous results showed that p19 did not interact with two known p21 effectors, Raf1 and Rin1, but was shown to interact with RACK1, a scaffolding protein that promotes multi-protein complexes in different signaling pathways (Cancer Res 2003, 63 p5178). This observation suggests that p19 and p21 play differential and complementary roles in the cell.[Principal Findings]: We found that p19 regulates telomerase activity through its interaction with p73a/b proteins. We also found that p19 overexpression induces G1/S phase delay; an observation that correlates with hypophosphorylation of both Akt and p70SK6. Similarly, we also observed that FOXO1 is upregulated when p19 is overexpressed. The three observations of (1) hypophosphorylation of Akt, (2) G1/S phase delay and (3) upregulation of FOXO1 lead us to conclude that p19 induces G1/S phase delay, thereby maintaining cells in a reversible quiescence state and preventing entry into apoptosis. We then assessed the effect of p19 RNAi on HeLa cell growth and found that p19 RNAi increases cell growth, thereby having the opposite effect of arrest of the G1/S phase or producing a cellular quiescence state.[Significance]: Interestingly, p19 induces FOXO1 that in combination with the G1/S phase delay and hypophosphorylation of both Akt and p70SK6 leads to maintenance of a reversible cellular quiescence state, thereby preventing entry into apoptosis.This work was supported by Fundacion de Investigacion Medica Mutua Madrileña Automovilista (Fundacion MMA), the Plan Nacional (MEC) BFU2005-00701 and the Fundacion Eugenio Rodriguez Pascual. M.C. was a recipient of a Fmed MMA fellowship.Peer reviewe

    Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset

    Get PDF
    We present an approach in which the semantics of an XML language is defined by means of a transformation from an XML document model (an XML schema) to an application specific model. The application specific model implements the intended behavior of documents written in the language. A transformation is specified in a model transformation language used in the Model Driven Architecture (MDA) approach for software development. Our approach provides a better separation of three concerns found in XML applications: syntax, syntax processing logic and intended meaning of the syntax. It frees the developer of low-level syntactical details and improves the adaptability and reusability of XML applications. Declarative transformation rules and the explicit application model provide a finer control over the application parts affected by adaptations. Transformation rules and the application model for an XML language may be composed with the corresponding rules and application models defined for other XML languages. In that way we achieve reuse and composition of XML applications

    Intravascular ultrasound pulmonary artery denervation to treat pulmonary arterial hypertension (TROPHY1)

    Get PDF
    Objectives The aim of this study was to investigate whether therapeutic intravascular ultrasound pulmonary artery denervation (PDN) is safe and reduces pulmonary vascular resistance (PVR) in patients with pulmonary arterial hypertension (PAH) on a minimum of dual oral therapy. Background Early studies have suggested that PDN can reduce PVR in patients with PAH. Methods TROPHY1 (Treatment of Pulmonary Hypertension 1) was a multicenter, international, open-label trial undertaken at 8 specialist centers. Patients 18 to 75 years of age with PAH were eligible if taking dual oral or triple nonparenteral therapy and not responsive to acute vasodilator testing. Eligible patients underwent PDN (TIVUS System). The primary safety endpoint was procedure-related adverse events at 30 days. Secondary endpoints included procedure-related adverse events, disease worsening and death to 12 months, and efficacy endpoints that included change in pulmonary hemodynamic status, 6-min walk distance, and quality of life from baseline to 4 or 6 months. Patients were to remain on disease-specific medication for the duration of the study. Results Twenty-three patients underwent PDN, with no procedure-related serious adverse events reported. The reduction in PVR at 4- or 6-month follow-up was 94 ± 151 dyn·s·cm−5 (p = 0.001) or 17.8%, which was associated with a 42 ± 63 m (p = 0.02) increase in 6-min walk distance and a 671 ± 1,555 step (p = 0.04) increase in daily activity. Conclusions In this multicenter early feasibility study, PDN with an intravascular ultrasound catheter was performed without procedure-related adverse events and was associated with a reduction in PVR and increases in 6-min walk distance and daily activity in patients with PAH on background dual or triple therapy

    Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes

    Get PDF
    Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications

    Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology Results of the JUSTIFY-PCI Study

    Get PDF
    Background—Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. / Methods and Results—Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P0.80 had a significantly smaller gain (Δ4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. / Conclusions—Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI

    The Mechanism of Release of P-TEFb and HEXIM1 from the 7SK snRNP by Viral and Cellular Activators Includes a Conformational Change in 7SK

    Get PDF
    The positive transcription elongation factor, P-TEFb, is required for the production of mRNAs, however the majority of the factor is present in the 7SK snRNP where it is inactivated by HEXIM1. Expression of HIV-1 Tat leads to release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo, but the release mechanisms are unclear.We developed an in vitro P-TEFb release assay in which the 7SK snRNP immunoprecipitated from HeLa cell lysates using antibodies to LARP7 was incubated with potential release factors. We found that P-TEFb was directly released from the 7SK snRNP by HIV-1 Tat or the P-TEFb binding region of the cellular activator Brd4. Glycerol gradient sedimentation analysis was used to demonstrate that the same Brd4 protein transfected into HeLa cells caused the release of P-TEFb and HEXIM1 from the 7SK snRNP in vivo. Although HEXIM1 binds tightly to 7SK RNA in vitro, release of P-TEFb from the 7SK snRNP is accompanied by the loss of HEXIM1. Using a chemical modification method, we determined that concomitant with the release of HEXIM1, 7SK underwent a major conformational change that blocks re-association of HEXIM1.Given that promoter proximally paused polymerases are present on most human genes, understanding how activators recruit P-TEFb to those genes is critical. Our findings reveal that the two tested activators can extract P-TEFb from the 7SK snRNP. Importantly, we found that after P-TEFb is extracted a dramatic conformational change occurred in 7SK concomitant with the ejection of HEXIM1. Based on our findings, we hypothesize that reincorporation of HEXIM1 into the 7SK snRNP is likely the regulated step of reassembly of the 7SK snRNP containing P-TEFb
    corecore