1,315 research outputs found
Radial Excited States for Heavy Quark Systems in NRQCD
Following the Non-Relativistic QCD approach we use a gauge invariant smearing
method with factorization to measure the excitation energies for a heavy
system on a lattice at . The results come
from averaging over an ensemble of 60 QCD configurations. In order to enhance
the signal from each configuration we use wall sources for quark propagators.
The quark Hamiltonian contains only the simplest non-relativistic kinetic
energy term. The results are listed for a range of bare quark masses. The mass
splittings are insensitive to this variable though there are a slight trends
with increasing quark mass. For an appropriate choice of UV cut-off
(Gev) the mass spectrum compares reasonably well with the
experimental values for the spin-averaged energy gaps of the system.
We also present results for the and waves for the lowest bare quark
mass. The results are consistent with degeneracy between the two types of
wave. This encourages the idea that even with our simple quark Hamiltonian the
departure from rotational invariance is not great.Comment: 12 page
Euclidean wormholes with Phantom field and Phantom field accompanied by perfect fluid
We study the classical Euclidean wormhole solutions for the gravitational
systems with minimally coupled pure Phantom field and minimally coupled Phantom
field accompanied by perfect fluid. It is shown that such solutions do exist
and then the general forms of the Phantom field potential are obtained for
which there are classical Euclidean wormhole solutions.Comment: 15 pages, major revision with perfect flui
Critical temperature for the two-dimensional attractive Hubbard Model
The critical temperature for the attractive Hubbard model on a square lattice
is determined from the analysis of two independent quantities, the helicity
modulus, , and the pairing correlation function, . These
quantities have been calculated through Quantum Monte Carlo simulations for
lattices up to , and for several densities, in the
intermediate-coupling regime. Imposing the universal-jump condition for an
accurately calculated , together with thorough finite-size scaling
analyses (in the spirit of the phenomenological renormalization group) of
, suggests that is considerably higher than hitherto assumed.Comment: 5 pages, 6 figures. Accepted for publication in Phys. Rev.
Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy
Recent observations on Type-Ia supernovae and low density () measurement of matter including dark matter suggest that the present-day
universe consists mainly of repulsive-gravity type `exotic matter' with
negative-pressure often said `dark energy' (). But the nature
of dark energy is mysterious and its puzzling questions, such as why, how,
where and when about the dark energy, are intriguing. In the present paper the
authors attempt to answer these questions while making an effort to reveal the
genesis of dark energy and suggest that `the cosmological nuclear binding
energy liberated during primordial nucleo-synthesis remains trapped for a long
time and then is released free which manifests itself as dark energy in the
universe'. It is also explained why for dark energy the parameter . Noting that for stiff matter and for radiation; is for dark energy because is due to `deficiency of
stiff-nuclear-matter' and that this binding energy is ultimately released as
`radiation' contributing , making . When
dark energy is released free at , . But as on present day
at when radiation strength has diminished to , . This, thus almost solves the dark-energy mystery of
negative pressure and repulsive-gravity. The proposed theory makes several
estimates /predictions which agree reasonably well with the astrophysical
constraints and observations. Though there are many candidate-theories, the
proposed model of this paper presents an entirely new approach (cosmological
nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction
Molecular spintronics: Coherent spin transfer in coupled quantum dots
Time-resolved Faraday rotation has recently demonstrated coherent transfer of
electron spin between quantum dots coupled by conjugated molecules. Using a
transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the
Faraday rotation signal as a function of the probe frequency in a pump-probe
setup using neutral quantum dots. Additionally, we study the signal of one
spin-polarized excess electron in the coupled dots. We show that, in both
cases, the Faraday rotation angle is determined by the spin transfer
probabilities and the Heisenberg spin exchange energy. By comparison of our
results with experimental data, we find that the transfer matrix element for
electrons in the conduction band is of order 0.08 eV and the spin transfer
probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change
Cubic interaction vertices for massive and massless higher spin fields
Using the light-cone formulation of relativistic dynamics, we develop various
methods for constructing cubic interaction vertices and apply these methods to
the study of higher spin fields propagating in flat space of dimension greater
than or equal to four. Generating functions of parity invariant cubic
interaction vertices for massive and massless higher spin fields of arbitrary
symmetry are obtained. We derive restrictions on the allowed values of spins
and the number of derivatives, which provide a classification of cubic
interaction vertices for totally symmetric fields. As an example of application
of the light-cone formalism, we obtain simple expressions for the minimal
Yang-Mills and gravitational interactions of massive totally symmetric
arbitrary spin fields. We give the complete list of parity invariant and parity
violating cubic interaction vertices that can be constructed for massless
fields in five and six-dimensional spaces.Comment: 55 pages, LaTeX-2e, v3: Equations (3.15),(3.16) added to Section 3.
Discussion of vertices for massless fields in d=4 and footnotes 16,17 added
to Section 5.1. New vertices added to Table I. Misprints in equations (7.4),
(C.5), and (D.58) correcte
Thermodynamics of Electrolytes on Anisotropic Lattices
The phase behavior of ionic fluids on simple cubic and tetragonal
(anisotropic) lattices has been studied by grand canonical Monte Carlo
simulations. Systems with both the true lattice Coulombic potential and
continuous-space electrostatic interactions have been investigated. At
all degrees of anisotropy, only coexistence between a disordered low-density
phase and an ordered high-density phase with the structure similar to ionic
crystal was found, in contrast to recent theoretical predictions. Tricritical
parameters were determined to be monotonously increasing functions of
anisotropy parameters which is consistent with theoretical calculations based
on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like
behavior is observed, from which we estimated the dimensionless tricritical
temperature and density for the two-dimensional square lattice electrolyte to
be and .Comment: submitted to PR
Nanofabrication by magnetic focusing of supersonic beams
We present a new method for nanoscale atom lithography. We propose the use of
a supersonic atomic beam, which provides an extremely high-brightness and cold
source of fast atoms. The atoms are to be focused onto a substrate using a thin
magnetic film, into which apertures with widths on the order of 100 nm have
been etched. Focused spot sizes near or below 10 nm, with focal lengths on the
order of 10 microns, are predicted. This scheme is applicable both to precision
patterning of surfaces with metastable atomic beams and to direct deposition of
material.Comment: 4 pages, 3 figure
Screening, production and biochemical characterization of a new fibrinolytic enzyme produced by Streptomyces sp. (Streptomycetaceae) isolated from Amazonian lichens
Thrombosis is a pathophysiological disorder caused by accumulation of fibrin in the blood. Fibrinolytic proteases with potent thrombolytic activity have been produced by diverse microbial sources. Considering the microbial biodiversity of the Amazon region, this study aimed at the screening, production and biochemical characterization of a fibrinolytic enzyme produced by Streptomyces sp. isolated from Amazonian lichens. The strain Streptomyces DPUA1576 showed the highest fibrinolytic activity, which was 283 mm2. Three variables at two levels were used to assess their effects on the fibrinolytic production. The parameters studied were agitation (0.28 - 1.12 g), temperature (28 - 36 ºC) and pH (6.0 - 8.0); all of them had significant effects on the fibrinolytic production. The maximum fibrinolytic activity (304 mm2) was observed at 1.12 g, 28 ºC, and pH of 8.0. The crude extract of the fermentation broth was used to assess the biochemical properties of the enzyme. Protease and fibrinolytic activities were stable during 6 h, at a pH ranging from 6.8 to 8.4 and 5.8 to 9.2, respectively. Optimum temperature for protease activity ranged between 35 and 55 °C, while the highest fibrinolytic activity was observed at 45 ºC. Proteolytic activity was inhibited by Cu2+ and Co2+ ions, phenylmethylsulfonyl fluoride (PMSF) and pepstatin A, which suggests that the enzyme is a serine protease. Enzymatic extract cleaved fibrinogen at the subunits A-chain, A-chain, and -chain. The results indicated that Streptomyces sp. DPUA 1576 produces enzymes with fibrinolytic and fibrinogenolytic activity, enzymes with an important application in the pharmaceutical industry.The authors grateful acknowledge the financial support of Fundação de Amparo a Pesquisa do Estado de Pernambuco (FACEPE, Pernambuco, Brazil, N. 0158-2.12/11), CNPq/ RENORBIO (National Counsel of Technological and Scientific Development, N.55146/2010-3) and National Council for the Improvement of Higher Education (CAPES, Brazil) for the scholarship. The author thanks editor and reviewers for their review and comments.info:eu-repo/semantics/publishedVersio
Dynamical model and nonextensive statistical mechanics of a market index on large time windows
The shape and tails of partial distribution functions (PDF) for a financial
signal, i.e. the S&P500 and the turbulent nature of the markets are linked
through a model encompassing Tsallis nonextensive statistics and leading to
evolution equations of the Langevin and Fokker-Planck type. A model originally
proposed to describe the intermittent behavior of turbulent flows describes the
behavior of normalized log-returns for such a financial market index, for small
and large time windows, both for small and large log-returns. These turbulent
market volatility (of normalized log-returns) distributions can be sufficiently
well fitted with a -distribution. The transition between the small time
scale model of nonextensive, intermittent process and the large scale Gaussian
extensive homogeneous fluctuation picture is found to be at a 200 day
time lag. The intermittency exponent () in the framework of the
Kolmogorov log-normal model is found to be related to the scaling exponent of
the PDF moments, -thereby giving weight to the model. The large value of
points to a large number of cascades in the turbulent process. The
first Kramers-Moyal coefficient in the Fokker-Planck equation is almost equal
to zero, indicating ''no restoring force''. A comparison is made between
normalized log-returns and mere price increments.Comment: 40 pages, 14 figures; accepted for publication in Phys Rev
- …
