50 research outputs found

    Disparities in the analysis of morphological disparity

    Get PDF
    Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no ‘one-size-fits-all’ approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis

    Front Immunol

    Get PDF
    HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/μL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/μL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/μL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies

    Markovian Equilibrium in Infinite Horizon Economies with Incomplete Markets and Public Policy

    Full text link
    We develop an isotone recursive approach to the problem of existence, computation, and characterization of nonsymmetric locally Lipschitz continuous (and, therefore, Clarke-differentiable) Markovian equilibrium for a class of infinite horizon multiagent competitive equilibrium models with capital, aggregate risk, public policy, externalities, one sector production, and incomplete markets. The class of models we consider is large, and examples have been studied extensively in the applied literature in public economics, macroeconomics, and financial economics. We provide sufficient conditions that distinguish between economies with isotone Lipschitizian Markov equilibrium decision processes (MEDPs) and those that have only locally Lipschitzian (but not necessarily isotone) MEDPs. As our fixed point operators are based upon order continuous and compact non-linear operators, we are able to provide sufficient conditions under which isotone iterative fixed point constructions converge to extremal MEDPs via successive approximation. We develop a first application of a new method for computing MEDPs in a system of Euler inequalities using isotone fixed point theory even when MEDPs are not necessarily isotone. The method is a special case of a more general mixed monotone recursive approach. We show MEDPs are unique only under very restrictive conditions. Finally, we prove monotone comparison theorems in Veinott's strong set order on the space of public policy parameters and distorted production functions

    Ecology and mode-of-life explain lifespan variation in birds and mammals

    No full text
    Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time

    Age impacts the pattern of care for elderly patients with rectal cancer

    No full text
    Purpose This study analyzed the current approaches for rectal cancer treatment in elderly patients. Methods We retrospectively studied 240 rectal cancer patients who had undergone radiotherapy from 2000 to 2008. The ages of the patients ranged from 65 and 75 years (group A, n = 127) and older than 75 years (group B, n = 113). The distribution of the Charlson comorbidity index was similar between the two groups, but the ECOG performance status (PS) differed between the groups (66 % of the patients of group A were PS 0, and 40% were PS 0 in group B(p < 0.0001)). The tumor stages were comparable between groups. Results The median age of the patients was 74.3 years (range 65-90.6). Treatment was discussed during a multidisciplinary cancer team meeting before treatment for 55 % of the cases in group A and 73 % of the cases in group B (p < 0.001), and treatment proposals were in accordance with guidelines in 96 % of the cases in group A and 76 % of the cases in group B (p < 0.001). Group B patients received slightly less concurrent chemotherapy (35 vs. 30 % for group A; p = 0.54), more hypofractionated radiotherapy (41 vs. 54 % for group A; p = 0.064), less surgery (92 vs. 80 % for group A; p = 0.014), and less adjuvant chemotherapy (34 vs. 10 % for group A; p < 0.001). Finally, 80 % of the patients in group A and 60 % of the patients in group B received treatment in accordance with guidelines (p = 0.007) and in the logistic regression model. Non-metastatic patients who were aged below 75 years were predicted for conformal management (HR=0.323; 95 % CI=0.152-0.684) irrespective of their performance status, comorbidity, or disease stage. Conclusions Treatment proposals and administered therapy differed according to age

    Three Engineering Paradigms in the Historical Development of Water Services: More, Better and Cheaper Water to European Cities

    No full text
    International audienceThe size and complexity of large cities creates the ‘urban water’ sustainability issue: where water transport and treatment technologies, public water services, including public water supply, sewage collection and treatment, and storm water control, had become the object of specific policies, separate from water resource allocation. Today, large metropolitan areas cannot take natural abundance for granted any more, and they need to protect and to manage water resources, if only to reduce the long term cost of transporting and treating water. In this chapter, we describe the historical development of water services in European metropolitan areas, placing the technological developments in their geographic, socio-economic, and political contexts. Our framework follows the successive contributions of three paradigms: civil engineering, sanitary engineering, and environmental engineering. Civil engineering has to do with the ‘quantity of water’, and it allows water to be moved in and out of cities, up hills, and under floors. Sanitary engineering has to do with ‘water quality’, and water treatment has given cities more freedom to take water from nearby rivers and to reduce impacts of sewer discharge. Lastly, environmental engineering has the potential to overcome supply-side shortcomings: it can use demand-side management, water conservation, water allocation flexibility; it can also provide an integrated approach to water services, water resources management, and land use policies

    Conventional Dendritic Cells and Slan+ Monocytes During HIV-2 Infection

    No full text
    HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/μL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/μL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/μL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies

    The SUBGLACIOR drilling probe: Concept and design

    No full text
    In response to the 'oldest ice' challenge initiated by the International Partnerships in Ice Core Sciences (IPICS), new rapid-access drilling technologies through glacier ice need to be developed. These will provide the information needed to qualify potential sites on the Antarctic ice sheet where the deepest section could include ice that is >1 Ma old and still in good stratigraphic order. Identifying a suitable site will be a prerequisite for deploying a multi-year deep ice-core drilling operation to elucidate the cause and mechanisms of the mid-Pleistocene transition from 40 ka glacial-interglacial cycles to 100 ka cycles. As part of the ICE&LASERS/SUBGLACIOR projects, we have designed an innovative probe, SUBGLACIOR, with the aim of perforating the ice sheet down to the bedrock in a single season and continuously measuring in situ the isotopic composition of the melted water and the methane concentration in trapped gases. Here we present the general concept of the probe, as well as the various technological solutions that we have favored so far to reach this goal. © 2014, International Glaciology Society. All rights reserved
    corecore