5,966 research outputs found
The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton
DiBELLA: Distributed long read to long read alignment
We present a parallel algorithm and scalable implementation for genome analysis, specifically the problem of finding overlaps and alignments for data from "third generation" long read sequencers [29]. While long sequences of DNA offer enormous advantages for biological analysis and insight, current long read sequencing instruments have high error rates and therefore require different approaches to analysis than their short read counterparts. Our work focuses on an efficient distributed-memory parallelization of an accurate single-node algorithm for overlapping and aligning long reads. We achieve scalability of this irregular algorithm by addressing the competing issues of increasing parallelism, minimizing communication, constraining the memory footprint, and ensuring good load balance. The resulting application, diBELLA, is the first distributed memory overlapper and aligner specifically designed for long reads and parallel scalability. We describe and present analyses for high level design trade-offs and conduct an extensive empirical analysis that compares performance characteristics across state-of-the-art HPC systems as well as a commercial cloud architectures, highlighting the advantages of state-of-the-art network technologies
Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals
An investigation on stochastic deflection of high-energy negatively charged
particles in a bent crystal was carried out. On the basis of analytical
calculation and numerical simulation it was shown that it exists a maximum
angle at which most of the beam is deflected. The existence of a maximum, which
is taken in the correspondence of the optimal radius of curvature, is a novelty
with respect to the case of positively charged particles, for which the
deflection angle can be freely increased by increasing the crystal length. This
difference has to be ascribed to the stronger contribution of incoherent
scattering affecting the dynamics of negative particles that move closer to
atomic nuclei and electrons. We therefore identified the ideal parameters for
the exploitation of axial confinement for negatively charged particle beam
manipulation in future high-energy accelerators, e.g., ILC or muon colliders
Site recurrence of open and unitary quantum walks on the line
We study the problem of site recurrence of discrete time nearest neighbor
open quantum random walks (OQWs) on the integer line, proving basic properties
and some of its relations with the corresponding problem for unitary (coined)
quantum walks (UQWs). For both kinds of walks our discussion concerns two
notions of recurrence, one given by a monitoring procedure, another in terms of
P\'olya numbers, and we study their similarities and differences. In
particular, by considering UQWs and OQWs induced by the same pair of matrices,
we discuss the fact that recurrence of these walks are related by an additive
interference term in a simple way. Based on a previous result of positive
recurrence we describe an open quantum version of Kac's lemma for the expected
return time to a site
Planar channeling and quasichanneling oscillations in a bent crystal
Particles passing through a crystal under planar channeling experience
transverse oscillations in their motion. As channeled particles approach the
atomic planes of a crystal, they are likely to be dechanneled. This effect was
used in ion-beam analysis with MeV energy. We studied this effect in a bent
crystal for positive and negative particles within a wide range of energies in
sight of application of such crystals at accelerators. We found the conditions
for the appearance or not of channeling oscillations. Indeed a new kind of
oscillations, strictly related to the motion of over-barrier particles, i.e.
quasichanneling particles, has been predicted. Such oscillations, named planar
quasichanneling oscillations, possess a different nature than channeling
oscillations. Through computer simulation, we studied this effect and provided
a theoretical interpretation for them. We show that channeling oscillations can
be observed only for positive particles while quasichanneling oscillations can
exist for particles with either sign. The conditions for experimental
observation of channeling and quasichanneling oscillations at existing
accelerators with available crystal has been found and optimized.Comment: 25 pages, 11 figure
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
We propose a unique program of measurements of electric and magnetic dipole
moments of charm, beauty and strange charged baryons at the LHC, based on the
phenomenon of spin precession of channeled particles in bent crystals. Studies
of crystal channeling and spin precession of positively- and negatively-charged
particles are presented, along with feasibility studies and expected
sensitivities for the proposed experiment using a layout based on the LHCb
detector.Comment: 19 pages, 13 figure
Italian Science Case for ALMA Band 2+3
The Premiale Project "Science and Technology in Italy for the upgraded ALMA
Observatory - iALMA" has the goal of strengthening the scientific,
technological and industrial Italian contribution to the Atacama Large
Millimeter/submillimeter Array (ALMA), the largest ground based international
infrastructure for the study of the Universe in the microwave. One of the main
objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1,
is to develop the Italian contribution to the Science Case for the ALMA Band 2
or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an
opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower
frequency end of ALMA Band 3. Receiver technology has advanced since the
original definition of the ALMA frequency bands. It is now feasible to produce
a single receiver which could cover the whole frequency range from 67 GHz to
116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so
called Band 2+3 system. In addition, upgrades of the ALMA system are now
foreseen that should double the bandwidth to 16 GHz. The science drivers
discussed below therefore also discuss the advantages of these two enhancements
over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure
3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices
Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab
Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA
Planets form in protoplanetary disks and inherit their chemical compositions.
It is thus crucial to map the distribution and investigate the formation of
simple organics, such as formaldehyde and methanol, in protoplanetary disks. We
analyze ALMA observations of the nearby disk-jet system around the T Tauri star
DG Tau in the o-HCO and CHOH E,
A transitions at an unprecedented resolution of ,
i.e., au at a distance of 121 pc. The HCO emission originates from
a rotating ring extending from au with a peak at au, i.e., at
the edge of the 1.3mm dust continuum. CHOH emission is not detected down to
an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para
ratio of 1.8-2.8 the ring- and disk-height-averaged HCO column density is
cm, while that of CHOH is
cm. In the inner au no o-HCO emission
is detected with an upper limit on its beam-averaged column density of
cm. The HCO ring in the disk of DG Tau is
located beyond the CO iceline (R au). This suggests that the
HCO abundance is enhanced in the outer disk due to formation on grain
surfaces by the hydrogenation of CO ice. The emission peak at the edge of the
mm dust continuum may be due to enhanced desorption of HCO in the gas phase
caused by increased UV penetration and/or temperature inversion. The
CHOH/HCO abundance ratio is , in agreement with disk chemistry
models. The inner edge of the HCO ring coincides with the radius where the
polarization of the dust continuum changes orientation, hinting at a tight link
between the HCO chemistry and the dust properties in the outer disk and at
the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter
- …
