26 research outputs found

    Surface functionalization of Ti6Al4V with an extract of polyphenols from red grape pomace

    Get PDF
    The focus of the paper is on effectiveness of a functionalization process with natural polyphenols on a chemically treated and bioactive Ti6Al4V alloy, on the grafting mechanism, and the redox/scavenging activity of the grafted biomolecules. Polyphenols (phenolic acids, flavonoids, and condensed tannins) are extracted from organic red grape pomace. The functionalization process is performed at pH = 7.4 with the addition of calcium ions, which act as a bridge between the substrate and polyphenols. The presence, amount (semi-quantitative), distribution, release, and type of bonding to the surface of the grafted polyphenols have been assessed. The functionalized samples have a homogeneous distribution of polyphenols as a continuous layer and micro-sized agglomerates. The grafted polyphenols maintain redox chemical and radical scavenging ability. A fraction of polyphenols is released into water in one day, while a firmly grafted layer remains on the surface even after four weeks. A complete release can occur in case of an environment with pH of 4–5 (e.g. inflammation). The functionalized surfaces can be sterilized by gamma irradiation without significant damage of the grafted polyphenols

    Pilot-WINGS: An extended MUSE view of the structure of Abell 370

    Get PDF
    We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin2, the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy–galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE’s 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters
    corecore