560 research outputs found
Enhancing Symbolic Execution of Heap-based Programs with Separation Logic for Test Input Generation
Symbolic execution is a well established method for test input generation.
Despite of having achieved tremendous success over numerical domains, existing
symbolic execution techniques for heap-based programs are limited due to the
lack of a succinct and precise description for symbolic values over unbounded
heaps. In this work, we present a new symbolic execution method for heap-based
programs based on separation logic. The essence of our proposal is
context-sensitive lazy initialization, a novel approach for efficient test
input generation. Our approach differs from existing approaches in two ways.
Firstly, our approach is based on separation logic, which allows us to
precisely capture preconditions of heap-based programs so that we avoid
generating invalid test inputs. Secondly, we generate only fully initialized
test inputs, which are more useful in practice compared to those partially
initialized test inputs generated by the state-of-the-art tools. We have
implemented our approach as a tool, called Java StarFinder, and evaluated it on
a set of programs with complex heap inputs. The results show that our approach
significantly reduces the number of invalid test inputs and improves the test
coverage
Getting into hot water:sick guppies frequent warmer thermal conditions
Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions
The phase diagram of quark gluon plasma (QGP) formed at a very early stage
just after the heavy ion collision is obtained by using a holographic dual
model for the heavy ion collision. In this dual model colliding ions are
described by the charged shock gravitational waves. Points on the phase diagram
correspond to the QGP or hadronic matter with given temperatures and chemical
potentials. The phase of QGP in dual terms is related to the case when the
collision of shock waves leads to formation of trapped surface. Hadronic matter
and other confined states correspond to the absence of trapped surface after
collision.
Multiplicity of the ion collision process is estimated in the dual language
as area of the trapped surface. We show that a non-zero chemical potential
reduces the multiplicity. To plot the phase diagram we use two different dual
models of colliding ions, the point and the wall shock waves, and find
qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity.
The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.This work was supported by the Intramural Research Program
of the National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), US National Institutes of Health (A.M. and A.B.); by the Boehringer
Ingelheim Fonds (P.F.); by a European Research Council starting grant (to
M.B.D.M. and E.A.A.N.); and by The Cambridge Centre for Misfolding
Diseases. N.C. thanks the Spanish Ministry of Economy and Competitiveness
(RYC-2012-12068). S.W.C. thanks the Agency for Science, Technology, and
Research, Singapore for support
- …