348 research outputs found

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome.

    Get PDF
    Previous articles in Statistics in Medicine describe how to calculate the sample size required for external validation of prediction models with continuous and binary outcomes. The minimum sample size criteria aim to ensure precise estimation of key measures of a model's predictive performance, including measures of calibration, discrimination, and net benefit. Here, we extend the sample size guidance to prediction models with a time-to-event (survival) outcome, to cover external validation in datasets containing censoring. A simulation-based framework is proposed, which calculates the sample size required to target a particular confidence interval width for the calibration slope measuring the agreement between predicted risks (from the model) and observed risks (derived using pseudo-observations to account for censoring) on the log cumulative hazard scale. Precise estimation of calibration curves, discrimination, and net-benefit can also be checked in this framework. The process requires assumptions about the validation population in terms of the (i) distribution of the model's linear predictor and (ii) event and censoring distributions. Existing information can inform this; in particular, the linear predictor distribution can be approximated using the C-index or Royston's D statistic from the model development article, together with the overall event risk. We demonstrate how the approach can be used to calculate the sample size required to validate a prediction model for recurrent venous thromboembolism. Ideally the sample size should ensure precise calibration across the entire range of predicted risks, but must at least ensure adequate precision in regions important for clinical decision-making. Stata and R code are provided

    Quantum flutter of supersonic particles in one-dimensional quantum liquids

    Full text link
    The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the most puzzling phenomena and challenging problems in condensed matter physics. Here we report on essentially exact results on the time evolution of an impurity injected at a finite velocity into a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the correlation hole around a particle in a strongly coupled many-body quantum system, and find that the resulting correlated state does not come to a complete stop but reaches a steady state which propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an intuitive physical picture of these intriguing discoveries, and propose an experimental setup where this physics can be realized and probed directly.Comment: 13 pages, 9 figure

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Modulation of Wnt/β-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer

    Get PDF
    Using a screen for Wnt/β-catenin inhibitors, a family of 8-hydroxyquinolone derivatives with in vivo anti-cancer properties was identified. Analysis of microarray data for the lead compound N-((8-hydroxy-7-quinolinyl) (4-methylphenyl)methyl)benzamide (HQBA) using the Connectivity Map database suggested that it is an iron chelator that mimics the hypoxic response. HQBA chelates Fe2+ with a dissociation constant of ∼10−19 , with much weaker binding to Fe3+ and other transition metals. HQBA inhibited proliferation of multiple cell lines in culture, and blocked the progression of established spontaneous cancers in two distinct genetically engineered mouse models of mammary cancer, MMTV-Wnt1 and MMTV-PyMT mice, without overt toxicity. HQBA may inhibit an iron-dependent factor that regulates cell-type-specific β-catenin-driven transcription. It inhibits cancer cell proliferation independently of its effect on β-catenin signaling, as it works equally well in MMTV-PyMT tumors and diverse β-catenin-independent cell lines. HQBA is a promising specific intracellular Fe2+ chelator with activity against spontaneous mouse mammary cancers

    Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium botulinum </it>strains can be divided into four physiological groups that are sufficiently diverged to be considered as separate species. Here we present the first complete genome of a <it>C. botulinum </it>strain from physiological group III, causing animal botulism. We also compare the sequence to three new draft genomes from the same physiological group.</p> <p>Results</p> <p>The 2.77 Mb chromosome was highly conserved between the isolates and also closely related to that of <it>C. novyi</it>. However, the sequence was very different from the human <it>C. botulinum </it>group genomes. Replication-directed translocations were rare and conservation of synteny was high. The largest difference between <it>C. botulinum </it>group III isolates occurred within their surprisingly large plasmidomes and in the pattern of mobile elements insertions. Five plasmids, constituting 13.5% of the total genetic material, were present in the completed genome. Interestingly, the set of plasmids differed compared to other isolates. The largest plasmid, the botulinum-neurotoxin carrying prophage, was conserved at a level similar to that of the chromosome while the medium-sized plasmids seemed to be undergoing faster genetic drift. These plasmids also contained more mobile elements than other replicons. Several toxins and resistance genes were identified, many of which were located on the plasmids.</p> <p>Conclusions</p> <p>The completion of the genome of <it>C. botulinum </it>group III has revealed it to be a genome with dual identity. It belongs to the pathogenic species <it>C. botulinum</it>, but as a genotypic species it should also include <it>C. novyi </it>and <it>C. haemolyticum</it>. The genotypic species share a conserved chromosomal core that can be transformed into various pathogenic variants by modulation of the highly plastic plasmidome.</p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice

    Get PDF
    In Asian cultivated rice (Oryza sativa L.), aroma is one of the most valuable traits in grain quality and 2-ACP is the main volatile compound contributing to the characteristic popcorn-like odour of aromatic rices. Although the major locus for grain fragrance (frg gene) has been described recently in Basmati rice, this gene has not been characterised in true japonica varieties and molecular information available on the genetic diversity and evolutionary origin of this gene among the different varieties is still limited. Here we report on characterisation of the frg gene in the Azucena variety, one of the few aromatic japonica cultivars. We used a RIL population from a cross between Azucena and IR64, a non-aromatic indica, the reference genomic sequence of Nipponbare (japonica) and 93–11 (indica) as well as an Azucena BAC library, to identify the major fragance gene in Azucena. We thus identified a betaine aldehyde dehydrogenase gene, badh2, as the candidate locus responsible for aroma, which presented exactly the same mutation as that identified in Basmati and Jasmine-like rices. Comparative genomic analyses showed very high sequence conservation between Azucena and Nipponbare BADH2, and a MITE was identified in the promotor region of the BADH2 allele in 93–11. The badh2 mutation and MITE were surveyed in a representative rice collection, including traditional aromatic and non-aromatic rice varieties, and strongly suggested a monophylogenetic origin of this badh2 mutation in Asian cultivated rices. Altogether these new data are discussed here in the light of current hypotheses on the origin of rice genetic diversity
    corecore