131 research outputs found

    Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Get PDF
    BACKGROUND: Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. METHODS: To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. RESULTS: For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches) of the arterial system. CONCLUSION: A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law

    Baubles, Bangles, and Biotypes: A Critical Review of the use and Abuse of the Biotype Concept

    Get PDF
    Pest species of insects are notoriously prone to escape the weapons deployed in management efforts against them. This is particularly true in herbivorous insects. When a previously successful tactic fails the insect population has apparently adapted to it and is often considered to be a new or distinct entity, and given the non-formal category ‘biotype’. The entities falling under the umbrella term ‘biotype’ are not consistent either within or between biotypes, and their underlying genetic composition and origins, while generally unknown, are likely heterogeneous within and variable between biotypes. In some cases race or species may be more appropriate referents. Some examples of applications of the concept in the context of host plant resistance are discussed. It is argued here that the term ‘biotype’ and its applications are overly simplistic, confused, have not proved useful in current pest management, and lack predictive power for future management

    Extension of Murray's law using a non-Newtonian model of blood flow

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate.</p> <p>Modeling</p> <p>In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. Σ<it>R</it><sup><it>c </it></sup>= <it>cste </it>with <it>c </it>= 3 is verified and is independent of <it>n</it>, the dimensionless index in the viscosity equation; <it>R </it>being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of <it>c </it>may be calculated depending on the value of <it>n</it>.</p> <p>Results</p> <p>We find that <it>c </it>varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to <it>c </it>= 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature.</p> <p>Conclusion</p> <p>It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.</p

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Evidence of Differential Allelic Effects between Adolescents and Adults for Plasma High-Density Lipoprotein

    Get PDF
    A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults

    Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.

    Get PDF
    The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean’s interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 mmolm 2 d 1) dominates over N2 fixation (9.0±9.4 mmolm 2 d 1) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23–1.00 TmolNyr 1 to the euphotic zone.MALASPINA (CSD2008-00077)Versión del editor10,015

    Adult-Onset Obesity Reveals Prenatal Programming of Glucose-Insulin Sensitivity in Male Sheep Nutrient Restricted during Late Gestation

    Get PDF
    BACKGROUND: Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS: Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS: This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation

    A falling of the veils: turning points and momentous turning points in leadership and the creation of CSR

    Get PDF
    This article uses the life stories approach to leadership and leadership development. Using exploratory, qualitative data from a Forbes Global 2000 and FTSE 100 company, we discuss the role of the turning point (TP) as an important antecedent of leadership in corporate social responsibility. We argue that TPs are causally efficacious, linking them to the development of life narratives concerned with an evolving sense of personal identity. Using both a multi-disciplinary perspective and a multi-level focus on CSR leadership, we identify four narrative cases. We propose that they helped to re-define individuals’ sense of self and in some extreme cases completely transformed their self-identity as leaders of CSR. Hence we also distinguish the momentous turning point (MTP) that created a seismic shift in personality, through re-evaluation of the individuals’ personal values. We argue that whilst TPs are developmental experiences that can produce responsible leadership, the MTP changes the individuals’ personal priorities in life to produce responsible leadership that perhaps did not exist previously. Thus we appropriate Maslow’s (1976, p. 77) metaphorical phrase ‘A falling of the veils’ from his discussion of peak and desolation experiences that produce personal growth. Using a multi-disciplinary literature from social theory (Archer, 2012) moral psychology (Narvaez, 2009) and social psychology (Schwartz, 2010), we present a theoretical model that illustrates the psychological process of the (M)TP, thus contributing to the growing literature on the microfoundations of CSR
    corecore