129 research outputs found

    What causes increasing and unnecessary use of radiological investigations? a survey of radiologists' perceptions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth in use and overuse of diagnostic imaging significantly impacts the quality and costs of health care services. What are the modifiable factors for increasing and unnecessary use of radiological services? Various factors have been indentified, but little is known about their relative impact. Radiologists hold key positions for providing such knowledge. Therefore the purpose of this study was to obtain radiologists' perspective on the causes of increasing and unnecessary use of radiological investigations.</p> <p>Methods</p> <p>In a mailed questionnaire radiologist members of the Norwegian Medical Association were asked to rate potential causes of increased investigation volume (fifteen items) and unnecessary investigations (six items), using five-point-scales. Responses were analysed by using summary statistics and Factor Analysis. Associations between variables were determined using Students' t-test, Spearman rank correlation and Chi-Square tests.</p> <p>Results</p> <p>The response rate was 70% (374/537). The highest rated causes of increasing use of radiological investigations were: a) new radiological technology, b) peoples' demands, c) clinicians' intolerance for uncertainty, d) expanded clinical indications, and e) availability. 'Over-investigation' and 'insufficient referral information' were reported the most frequent causes of unnecessary investigations. Correlations between causes of increasing and unnecessary radiology use were identified.</p> <p>Conclusion</p> <p>In order to manage the growth in radiological imaging and curtail inappropriate investigations, the study findings point to measures that influence the supply and demand of services, specifically to support the decision-making process of physicians.</p

    A prospective observational study to assess the diagnostic accuracy of clinical decision rules for children presenting to emergency departments after head injuries (protocol): The Australasian Paediatric Head Injury Rules Study (APHIRST)

    Get PDF
    Background: Head injuries in children are responsible for a large number of emergency department visits. Failure to identify a clinically significant intracranial injury in a timely fashion may result in long term neurodisability and death. Whilst cranial computed tomography (CT) provides rapid and definitive identification of intracranial injuries, it is resource intensive and associated with radiation induced cancer. Evidence based head injury clinical decision rules have been derived to aid physicians in identifying patients at risk of having a clinically significant intracranial injury. Three rules have been identified as being of high quality and accuracy: the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) from Canada, the Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) from the UK, and the prediction rule for the identification of children at very low risk of clinically important traumatic brain injury developed by the Pediatric Emergency Care Applied Research Network (PECARN) from the USA. This study aims to prospectively validate and compare the performance accuracy of these three clinical decision rules when applied outside the derivation setting.Methods/design: This study is a prospective observational study of children aged 0 to less than 18 years presenting to 10 emergency departments within the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network in Australia and New Zealand after head injuries of any severity. Predictor variables identified in CATCH, CHALICE and PECARN clinical decision rules will be collected. Patients will be managed as per the treating clinicians at the participating hospitals. All patients not undergoing cranial CT will receive a follow up call 14 to 90 days after the injury. Outcome data collected will include results of cranial CTs (if performed) and details of admission, intubation, neurosurgery and death. The performance accuracy of each of the rules will be assessed using rule specific outcomes and inclusion and exclusion criteria.Discussion: This study will allow the simultaneous comparative application and validation of three major paediatric head injury clinical decision rules outside their derivation setting.Trial registration: The study is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR)- ACTRN12614000463673 (registered 2 May 2014). © 2014 Babl et al.; licensee BioMed Central Ltd

    Real time contrast enhanced ultrasonography in detection of liver metastases from gastrointestinal cancer

    Get PDF
    Background: Contrast enhanced ultrasound (CEUS) is an imaging technique which appeared on the market around the year 2000 and proposed for the detection of liver metastases in gastrointestinal cancer patients, a setting in which accurate staging plays a significant role in the choice of treatment. Methods: A total of 109 patients with colorectal (n = 92)or gastric cancer prospectively underwent computed tomography (CT) scan and conventional US evaluation followed by real time CEUS. A diagnosis of metastases was made by CT or, for lesions not visibile at CT, the diagnosis was achieved by histopathology or by a malignant behavior during follow-up. Results: Of 109 patients, 65 were found to have metastases at presentation. CEUS improved sensitivity in metastatic livers from 76.9% of patients (US) to 95.4% (p < 0.01), while CT scan reached 90.8% (p = n.s. vs CEUS, p < 0.01 vs US). CEUS and CT were more sensitive than US also for detection of single lesions (87 with US, 122 with CEUS, 113 with CT). In 15 patients (13.8%), CEUS revealed more metastases than CT, while CT revealed more metastases than CEUS in 9 patients (8.2%) (p = n.s.). Conclusion: CEUS is more sensitive than conventional US in the detection of liver metastases and could be usefully employed in the staging of patients with gastrointestinal cancer. Findings at CEUS and CT appear to be complementary in achieving maximum sensitivity. © 2007 Piscaglia et al; licensee BioMed Central Ltd

    Intensive follo w-up after liver resection for colorectal liver metastases: results of combined serial tumour marker estimations and computed tomography of the chest and abdomen – a prospective study

    Get PDF
    The aim of the study was to prospectively evaluate an intensive follow-up programme using serial tumour marker estimations and contrast-enhanced computed tomography (CT) of the chest and abdomen in patients undergoing potentially curative resection of colorectal liver metastases. Seventy-six consecutive patients having undergone potentially curative resections of colorectal liver metastases in a single unit were followed up with a protocol of 3 monthly carcinoembryonic antigen and carbohydrate antigen 19-9 estimations and contrast-enhanced spiral CT of the chest, abdomen and pelvis for the first 2 years following surgery and 6 monthly thereafter. The median period of follow-up was 24 months (range 18–60). Recurrent tumour was classed as early if within 6 months of liver resection. Thirty-seven of the 76 patients (49%) developed recurrence on follow-up. Nineteen recurrences were in the liver alone (51%), 16 liver and extrahepatic (43%) and two extrahepatic alone (6%). Of the 19 patients with isolated liver recurrence, eight developed within 6 months of liver resection none of which were resectable. Of the 11 recurrences after 6 months, five (45%) were resectable. Of the 37 recurrences, CT indicated recurrence despite normal tumour markers in 19 patients. Tumour markers suggested recurrence before imaging in 12 and concurrently with imaging in 6. In the 12 patients who presented with elevated tumour markers before imaging, there was a median lag period of 3 months (range 1–21) in recurrence being detected on further serial imaging. Seventeen patients who developed recurrence had normal tumour markers before initial resection of their liver metastases. Of these 17, 10 (58%) had an elevation of tumour markers associated with recurrence. Over a median follow-up of 2 years following liver resection, the use of CT or tumour markers alone would have failed to demonstrate early recurrence in 12 and 18 patients respectively. A combination of tumour markers and CT detected significantly more (P<0.05) recurrence than either modality alone. Tumour markers and CT should be used in combination in the follow-up of patients with resected colorectal liver metatases, including patients whose markers are normal at the time of initial liver resection

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    CT screening: a trade-off of risks, benefits, and costs

    No full text
    • …
    corecore