4,330 research outputs found

    Responses to selection for lean growth in sheep

    Get PDF
    This paper reports the selection responses achieved, and related results, following 9 years of index selection for lean growth in Suffolk sheep. The breeding goal of the index used comprised carcass lean weight and carcass fat weight at a constant age, with relative economic values of + 3 and –1 per kg. The selection criteria were live weight (LWT), ultrasonic fat depth (UFD) and ultrasonic muscle depth (UMD) adjusted to a constant age of 150 days. By year 9, responses in LWT, UFD and UMD in both sexes, as judged by the divergence between selection and control line performance, amounted to 4·88 kg, –1·1 mm and 2·8 mm respectively; these responses are between 7 and 15% of the overall means of the traits concerned. Although selection was originally on index scores based on phenotypic records, the retrospective analyses reported here used the mixed model applications of residual maximum likelihood to estimate parameters and best linear unbiased prediction to predict breeding values. The statistical model comprised fixed effects plus random effects accounting for direct additive, maternal additive and temporary environmental variation. Estimated genetic trends obtained by regressing estimated breeding values on year of birth were similar to annual responses estimated by comparing selection and control line means. Estimates of direct heritabilities were 0·054, 0·177, 0·286, 0·561 and 0·410 for birth weight (BWT), weaning weight (WWT), LWT, UFD and UMD respectively. Corresponding estimates of maternal heritabilities were 0·287, 0·205, 0·160, 0·083 and 0·164. Phenotypic correlations between all pairs of traits were positive and usually moderately high. There were low negative direct additive correlations between BWT and WWT, and between BWT and LWT, but higher positive maternal additive correlations between all other pairs of weight traits

    The ISO LWS high resolution spectral survey towards Sagittarius B2

    Get PDF
    A full spectral survey was carried out towards the Giant Molecular Cloud complex, Sagittarius B2 (Sgr B2), using the ISO Long Wavelength Spectrometer Fabry-Perot mode. This provided complete wavelength coverage in the range 47-196 um (6.38-1.53 THz) with a spectral resolution of 30-40 km/s. This is an unique dataset covering wavelengths inaccessible from the ground. It is an extremely important region of the spectrum as it contains both the peak of the thermal emission from dust, and crucial spectral lines of key atomic (OI, CII, OIII, NII and NIII) and molecular species (NH3, NH2, NH, H2O, OH, H3O+, CH, CH2, C3, HF and H2D+). In total, 95 spectral lines have been identified and 11 features with absorption depth greater than 3 sigma remain unassigned. Most of the molecular lines are seen in absorption against the strong continuum, whereas the atomic and ionic lines appear in emission (except for absorption in the OI 63 um and CII 158 um lines). Sgr B2 is located close to the Galactic Centre and so many of the features also show a broad absorption profile due to material located along the line of sight. A full description of the survey dataset is given with an overview of each detected species and final line lists for both assigned and unassigned features.Comment: Accepted for publication in MNRA

    Assessing the number of users who are excluded by domestic heating controls

    Get PDF
    This is the pre-print version of the Article. This Article is also referred to as: "Assessing the 'Design Exclusion' of Heating Controls at a Low-Cost, Low-Carbon Housing Development". - Copyright @ 2011 Taylor & FrancisSpace heating accounts for almost 60% of the energy delivered to housing which in turn accounts for nearly 27% of the total UK's carbon emissions. This study was conducted to investigate the influence of heating control design on the degree of ‘user exclusion’. This was calculated using the Design Exclusion Calculator, developed by the Engineering Design Centre at the University of Cambridge. To elucidate the capability requirements of the system, a detailed hierarchical task analysis was produced, due to the complexity of the overall task. The Exclusion Calculation found that the current design placed excessive demands upon the capabilities of at least 9.5% of the UK population over 16 years old, particularly in terms of ‘vision’, ‘thinking’ and ‘dexterity’ requirements. This increased to 20.7% for users over 60 years old. The method does not account for the level of numeracy and literacy and so the true exclusion may be higher. Usability testing was conducted to help validate the results which indicated that 66% of users at a low-carbon housing development could not programme their controls as desired. Therefore, more detailed analysis of the cognitive demands placed upon the users is required to understand where problems within the programming process occur. Further research focusing on this cognitive interaction will work towards a solution that may allow users to behave easily in a more sustainable manner

    Large Time Asymptotics in Contaminant Transport in Porous Media

    Full text link

    Ice mineralogy across and into the surfaces of Pluto, Triton, and Eris

    Get PDF
    We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with two methane phases—one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% ± 0.5%, 7.1% ± 0.4%, and 8.2% ± 0.3% for sub-Earth longitudes of 10°, 125°, and 257°. Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% ± 0.1% and 5.3% ± 0.4% for sub-Earth longitudes of 138° and 314°. Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% ± 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth
    corecore