86 research outputs found

    Preeclampsia is associated with compromized maternal synthesis of long chain polyunsaturated fatty acids leading to offspring deficiency

    Get PDF
    Obesity and excessive lipolysis are implicated in preeclampsia (PE). Intrauterine growth restriction is associated with low maternal body mass index and decreased lipolysis. Our aim was to assess how maternal and offspring fatty acid metabolism is altered in mothers in the third trimester of pregnancy with PE (n=62) or intrauterine growth restriction (n=23) compared with healthy pregnancies (n=164). Markers of lipid metabolism and erythrocyte fatty acid concentrations were measured. Maternal adipose tissue fatty acid composition and mRNA expression of adipose tissue fatty acid–metabolizing enzymes and placental fatty acid transporters were compared. Mothers with PE had higher plasma triglyceride (21%, P<0.001) and nonesterified fatty acid (50%, P<0.001) concentrations than controls. Concentrations of major n−6 and n−3 long-chain polyunsaturated fatty acids in erythrocytes were 23% to 60% lower (all P<0.005) in PE and intrauterine growth restriction mothers and offspring compared with controls. Subcutaneous adipose tissue Δ−5 and Δ−6 desaturase and very long-chain fatty acid elongase mRNA expression was lower in PE than controls (respectively, mean [SD] control 3.38 [2.96] versus PE 1.83 [1.91], P=0.030; 3.33 [2.25] versus 1.03 [0.96], P<0.001; 0.40 [0.81] versus 0.00 [0.00], P=0.038 expression relative to control gene [square root]). Low maternal and fetal long-chain polyunsaturated fatty acid concentrations in PE may be the result of decreased maternal synthesis

    Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient

    Get PDF
    We report a dystrophinopathy patient with an in-frame deletion of DMD exons 45–47, and therefore a genetic diagnosis of Becker muscular dystrophy, who presented with a more severe than expected phenotype. Analysis of the patient DMD mRNA revealed an 82 bp pseudoexon, derived from intron 44, that disrupts the reading frame and is expected to yield a nonfunctional dystrophin. Since the sequence of the pseudoexon and canonical splice sites does not differ from the reference sequence, we concluded that the genomic rearrangement promoted recognition of the pseudoexon, causing a severe dystrophic phenotype. We characterized the deletion breakpoints and identified motifs that might influence selection of the pseudoexon. We concluded that the donor splice site was strengthened by juxtaposition of intron 47, and loss of intron 44 silencer elements, normally located downstream of the pseudoexon donor splice site, further enhanced pseudoexon selection and inclusion in the DMD transcript in this patient

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Spectroscopic Investigation of a Metal Metal Bonded Fe6 Single Molecule Magnet with an Isolated S 19 2 Giant Spin Ground State

    No full text
    The metal metal bonded molecule [Bu4N][ HL 2Fe6 dmf 2] Fe6 was previously shown to possess a thermally isolated spin S 19 2 ground state and found to exhibit slow magnetization relaxation below a blocking temperature of amp; 8764;5 K [J. Am. Chem. Soc.2015, 137, 13949 13956]. Here, we present a comprehensive spectroscopic investigation of this unique single molecule magnet SMM , combining ultrawideband field swept high field electron paramagnetic resonance EPR with frequency domain Fourier transform terahertz EPR to accurately quantify the spin Hamiltonian parameters of Fe6. Of particular importance is the near absence of a 4th order axial zero field splitting term, which is known to arise because of quantum mechanical mixing of spin states on account of the relatively weak spin spin superexchange interactions in traditional polynuclear SMMs such as the celebrated Mn12 acetate. The combined high resolution measurements on both powder samples and an oriented single crystal provide a quantitative measure of the isolated nature of the spin ground state in the Fe6 molecule, as well as additional microscopic insights into factors that govern the quantum tunneling of its magnetization. This work suggests strategies for improving the performance of polynuclear SMMs featuring direct metal metal bonds and strong ferromagnetic spin spin exchange interaction
    • 

    corecore