683 research outputs found

    Determining the WIMP mass using the complementarity between direct and indirect searches and the ILC

    Get PDF
    We study the possibility of identifying dark matter properties from XENON-like 100 kg experiments and the GLAST satellite mission. We show that whereas direct detection experiments will probe efficiently light WIMPs, given a positive detection (at the 10% level for mχâ‰Č50m_{\chi} \lesssim 50 GeV), GLAST will be able to confirm and even increase the precision in the case of a NFW profile, for a WIMP-nucleon cross-section σχ−pâ‰Č10−8\sigma_{\chi-p} \lesssim 10^{-8} pb. We also predict the rate of production of a WIMP in the next generation of colliders (ILC), and compare their sensitivity to the WIMP mass with the XENON and GLAST projects.Comment: 32 pages, new figures and a more detailed statistical analysis. Final version to appear in JCA

    Epidemiological evidence for a hereditary contribution to myasthenia gravis: A retrospective cohort study of patients from North America

    Get PDF
    OBJECTIVES: To approximate the rate of familial myasthenia gravis and the coexistence of other autoimmune disorders in the patients and their families. DESIGN: Retrospective cohort study. SETTING: Clinics across North America. PARTICIPANTS: The study included 1032 patients diagnosed with acetylcholine receptor antibody (AChR)-positive myasthenia gravis. METHODS: Phenotype information of 1032 patients diagnosed with AChR-positive myasthenia gravis was obtained from clinics at 14 centres across North America between January 2010 and January 2011. A critical review of the epidemiological literature on the familial rate of myasthenia gravis was also performed. RESULTS: Among 1032 patients, 58 (5.6%) reported a family history of myasthenia gravis. A history of autoimmune diseases was present in 26.6% of patients and in 28.4% of their family members. DISCUSSION: The familial rate of myasthenia gravis was higher than would be expected for a sporadic disease. Furthermore, a high proportion of patients had a personal or family history of autoimmune disease. Taken together, these findings suggest a genetic contribution to the pathogenesis of myasthenia gravis

    Coastal ecosystem investigations with LiDAR (light detection and ranging) and bottom reflectance: Lake Superior reef threatened by migrating tailings

    Get PDF
    Where light penetration is excellent, the combination of LiDAR (Light Detection And Ranging) and passive bottom reflectance (multispectral, hyperspectral) greatly aids environmental studies. Over a century ago, two stamp mills (Mohawk and Wolverine) released 22.7 million metric tons of copper-rich tailings into Grand Traverse Bay (Lake Superior). The tailings are crushed basalt, with low albedo and spectral signatures different from natural bedrock (Jacobsville Sandstone) and bedrock-derived quartz sands. Multiple Lidar (CHARTS and CZMIL) over-flights between 2008–2016—complemented by ground-truth (Ponar sediment sampling, ROV photography) and passive bottom reflectance studies (3-band NAIP; 13-band Sentinal-2 orbital satellite; 48 and 288-band CASI)—clarified shoreline and underwater details of tailings migrations. Underwater, the tailings are moving onto Buffalo Reef, a major breeding site important for commercial and recreational lake trout and lake whitefish production (32% of the commercial catch in Keweenaw Bay, 22% in southern Lake Superior). If nothing is done, LiDAR-assisted hydrodynamic modeling predicts 60% tailings cover of Buffalo Reef within 10 years. Bottom reflectance studies confirmed stamp sand encroachment into cobble beds in shallow (0-5m) water but had difficulties in deeper waters (\u3e8 m). Two substrate end-members (sand particles) showed extensive mixing but were handled by CASI hyperspectral imaging. Bottom reflectance studies suggested 25-35% tailings cover of Buffalo Reef, comparable to estimates from independent counts of mixed sand particles (ca. 35% cover of Buffalo Reef by \u3e20% stamp sand mixtures)

    Facts about our ecological crisis are incontrovertible: we must take action

    Get PDF
    Humans cannot continue to violate the fundamental laws of nature or science with impunity, say 94 signatories including Dr Alison Green and Molly Scott Cato MEP. Professor of Sustainability Leadership at the University of Cumbria Jem Bendell joined others in calling for a wider debate about sustainability, featured in The Guardian. We the undersigned represent diverse academic disciplines, and the views expressed here are those of the signatories and not their organisations. While our academic perspectives and expertise may differ, we are united on one point: we will not tolerate the failure of this or any other government to take robust and emergency action in respect of the worsening ecological crisis. The science is clear, the facts are incontrovertible, and it is unconscionable to us that our children and grandchildren should have to bear the terrifying brunt of an unprecedented disaster of our own making

    Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate

    Get PDF
    The ability to control crystallization reactions is required in a vast range of processes including the production of functional inorganic materials and pharmaceuticals and the prevention of scale. However, it is currently limited by a lack of understanding of the mechanisms underlying crystal nucleation and growth. To address this challenge, it is necessary to carry out crystallization reactions in well‐defined environments, and ideally to perform in situ measurements. Here, a versatile microfluidic synchrotron‐based technique is presented to meet these demands. Droplet microfluidic‐coupled X‐ray diffraction (DMC‐XRD) enables the collection of time‐resolved, serial diffraction patterns from a stream of flowing droplets containing growing crystals. The droplets offer reproducible reaction environments, and radiation damage is effectively eliminated by the short residence time of each droplet in the beam. DMC‐XRD is then used to identify effective particulate nucleating agents for calcium carbonate and to study their influence on the crystallization pathway. Bioactive glasses and a model material for mineral dust are shown to significantly lower the induction time, highlighting the importance of both surface chemistry and topography on the nucleating efficiency of a surface. This technology is also extremely versatile, and could be used to study dynamic reactions with a wide range of synchrotron‐based techniques

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde
    • 

    corecore