152 research outputs found

    Relating branes and matrices

    Full text link
    We construct a general map between a Dp-brane with magnetic flux and a matrix configuration of D0-branes, by showing how one can rewrite the boundary state of the Dp-brane in terms of its D0-brane constituents. This map gives a simple prescription for constructing the matrices of fuzzy spaces corresponding to branes of arbitrary shape and topology. Since we explicitly identify the D0-brane degrees of freedom on the brane, we also derive the D0-brane charge of the brane in a very direct way including the A-genus term. As a check on our formalism, we use our map to derive the abelian-Born-Infeld equations of motion from the action of the D0-brane matrices.Comment: 28 pages, Late

    QED and String Theory

    Full text link
    We analyze the D9-D9bar system in type IIB string theory using Dp-brane probes. It is shown that the world-volume theory of the probe Dp-brane contains two-dimensional and four-dimensional QED in the cases with p=1 and p=3, respectively, and some applications of the realization of these well-studied quantum field theories are discussed. In particular, the two-dimensional QED (the Schwinger model) is known to be a solvable theory and we can apply the powerful field theoretical techniques, such as bosonization, to study the D-brane dynamics. The tachyon field created by the D9-D9bar strings appears as the fermion mass term in the Schwinger model and the tachyon condensation is analyzed by using the bosonized description. In the T-dualized picture, we obtain the potential between a D0-brane and a D8-D8bar pair using the Schwinger model and we observe that it consists of the energy carried by fundamental strings created by the Hanany-Witten effect and the vacuum energy due to a cylinder diagram. The D0-brane is treated quantum mechanically as a particle trapped in the potential, which turns out to be a system of a harmonic oscillator. As another application, we obtain a matrix theory description of QED using Taylor's T-duality prescription, which is actually applicable to a wide variety of field theories including the realistic QCD. We show that the lattice gauge theory is naturally obtained by regularizing the matrix size to be finite.Comment: 33 pages, Latex, 4 figures, a reference adde

    Open Dielectric Branes

    Get PDF
    We derive leading terms in the effective actions describing the coupling of bulk supergravity fields to systems of arbitrary numbers of Dp-branes and D(p+4)-branes in type IIA/IIB string theory. We use these actions to investigate the physics of Dp-D(p+4) systems in the presence of weak background fields. In particular, we construct various solutions describing collections of Dp-branes blown up into open D(p+2)-branes ending on D(p+4)-branes. The configurations are stabilized by the presence of background fields and represent an open-brane analogue of the Myers dielectric effect. To deduce the D-brane actions, we use supersymmetry to derive operators corresponding to moments of various conserved currents in the Berkooz-Douglas matrix model of M-theory in the presence of longitudinal M5-branes and then use dualities to relate these operators to the worldvolume operators appearing in the Dp-D(p+4)-brane effective actions.Comment: 55 pages, LaTeX, 6 figures, v2: references adde

    Strong decays Bs0BsπB_{s0} \to B_s \pi and Bs1BsπB_{s1} \to B^*_s \pi with light-cone QCD sum rules

    Full text link
    In this article, we calculate the strong coupling constants gBs0Bsηg_{B_{s0} B_s \eta} and gBs1Bsηg_{B_{s1} B^*_s \eta} with the light-cone QCD sum rules. Then we take into account the small ηπ0\eta-\pi^0 transition matrix according to Dashen's theorem, and obtain the small decay widths for the isospin violation processes Bs0BsηBsπ0B_{s0}\to B_s\eta\to B_s\pi^0 and Bs1BsηBsπ0B_{s1}\to B_s^*\eta\to B_s^*\pi^0. We can search the strange-bottomed (0+,1+)(0^+,1^+) mesons Bs0B_{s0} and Bs1B_{s1} in the invariant Bsπ0B_s \pi^0 and Bsπ0B^*_s \pi^0 mass distributions respectively.Comment: 15 pages, 2 figures, revised versio

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore