1,148 research outputs found

    Propagators on the two-dimensional light-cone

    Get PDF
    Light-cone quantization procedure recently presented is applied to the two-dimensional light-cone theories. By introducing the two distinct null planes it is shown that the modification term in the two-dimensional massless light-cone propagators suggested about twenty years ago vanishs.Comment: LATEX, 9page

    Exactly solvable model of superstring in Ramond-Ramond plane wave background

    Full text link
    We describe in detail the solution of type IIB superstring theory in the maximally supersymmetric plane-wave background with constant null Ramond-Ramond 5-form field strength. The corresponding light-cone Green-Schwarz action found in hep-th/0112044 is quadratic in both bosonic and fermionic coordinates. We find the spectrum of the light-cone Hamiltonian and the string representation of the supersymmetry algebra. The superstring Hamiltonian has a ``harmonic-oscillator'' form in both the string-oscillator and the zero-mode parts and thus has discrete spectrum in all 8 transverse directions. We analyze the structure of the zero-mode sector of the theory, establishing the precise correspondence between the lowest-lying ``massless'' string states and the type IIB supergravity fluctuation modes in the plane-wave background. The zero-mode spectrum has certain similarity to the supergravity spectrum in AdS_5 x S^5 of which the plane-wave background is a special limit. We also compare the plane-wave string spectrum with expected form of the light-cone gauge spectrum of superstring in AdS_5 x S^5.Comment: 33 pages, latex. v4: minor sign corrections in (1.5) and (3.62), to appear in PR

    The One-loop Open Superstring Massless Five-point Amplitude with the Non-Minimal Pure Spinor Formalism

    Get PDF
    We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the massless four-point amplitude. It encodes bosonic and fermionic external states in supersymmetric form and reduces to existing bosonic amplitudes when expanded in components, therefore proving their equivalence. We also show how to compute the kinematic structures involving fermionic states.Comment: 38 pages, harvmac TeX, v2: fix typo in (4.2) and add referenc

    Some Superstring Amplitude Computations with the Non-Minimal Pure Spinor Formalism

    Get PDF
    We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a "pure spinor superspace" which involves five θ\theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t8t_8 and ϵ10\epsilon_{10} tensors naturally emerge from integrals over pure spinor superspace.Comment: 20 pages, harvmac te

    Excited B mesons from the lattice

    Get PDF
    We determine the energies of the excited states of a heavy-light meson QqˉQ\bar{q}, with a static heavy quark and light quark with mass approximately that of the strange quark from both quenched lattices and with dynamical fermions. We are able to explore the energies of orbital excitations up to L=3, the spin-orbit splitting up to L=2 and the first radial excitation. These bsˉb \bar{s} mesons will be very narrow if their mass is less than 5775 MeV -- the BKBK threshold. We investigate this in detail and present evidence that the scalar meson (L=1) will be very narrow and that as many as 6 bsˉb \bar{s} excited states will have energies close to the BKBK threshold and should also be relatively narrow.Comment: 17 pages, 6 ps figure

    DDF Construction and D-Brane Boundary States in Pure Spinor Formalism

    Full text link
    Open string boundary conditions for non-BPS D-branes in type II string theories discussed in hep-th/0505157 give rise to two sectors with integer (R sector) and half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost variables in pure spinor formalism. Exploiting the manifest supersymmetry of the formalism we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sectors which are in one-to-one correspondence with the states in light-cone Green-Schwarz formalism. We also give a proof of validity of this construction. A similar construction in the closed string sector enables us to define a physical Hilbert space in pure spinor formalism which is used to project the covariant boundary states of both the BPS and non-BPS instantonic D-branes. These projected boundary states take exactly the same form as those found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder diagram with manifest open-closed duality.Comment: 37 pages, typos corrected, some organisational changes mad

    Pure Spinor Superspace Identities for Massless Four-point Kinematic Factors

    Full text link
    Using the pure spinor formalism we prove identities which relate the tree-level, one-loop and two-loop kinematic factors for massless four-point amplitudes. From these identities it follows that the complete supersymmetric one- and two-loop amplitudes are immediately known once the tree-level kinematic factor is evaluated. In particular, the two-loop equivalence with the RNS formalism (up to an overall coefficient) is obtained as a corollary.Comment: 10 pages, harvmac TeX. v2: Updated affiliation and Report-no

    Why Don't We Have a Covariant Superstring Field Theory?

    Full text link
    This talk deals with the old problem of formulatingn a covariant quantum theory of superstrings, ``covariant'' here meaning having manifest Lorentz symmetry and supersymmetry. The advantages and disadvantages of several quantization methods are reviewed. Special emphasis is put on the approaches using twistorial variables, and the algebraic structures of these. Some unsolved problems are identified.Comment: 5 pages, Goteborg-ITP-94-24, plain te

    Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function

    Get PDF
    Recent numerical evidence suggests that a mass spectrum of primordial black holes (PBHs) is produced as a consequence of near critical gravitational collapse. Assuming that these holes formed from the initial density perturbations seeded by inflation, we calculate model independent upper bounds on the mass variance at the reheating temperature by requiring the mass density not exceed the critical density and the photon emission not exceed current diffuse gamma-ray measurements. We then translate these results into bounds on the spectral index n by utilizing the COBE data to normalize the mass variance at large scales, assuming a constant power law, then scaling this result to the reheating temperature. We find that our bounds on n differ substantially (\delta n > 0.05) from those calculated using initial mass functions derived under the assumption that the black hole mass is proportional to the horizon mass at the collapse epoch. We also find a change in the shape of the diffuse gamma-ray spectrum which results from the Hawking radiation. Finally, we study the impact of a nonzero cosmological constant and find that the bounds on n are strengthened considerably if the universe is indeed vacuum-energy dominated today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added, version to be published in PR

    Holographic Description of Gravitational Anomalies

    Full text link
    The holographic duality can be extended to include quantum theories with broken coordinate invariance leading to the appearance of the gravitational anomalies. On the gravity side one adds the gravitational Chern-Simons term to the bulk action which gauge invariance is only up to the boundary terms. We analyze in detail how the gravitational anomalies originate from the modified Einstein equations in the bulk. As a side observation we find that the gravitational Chern-Simons functional has interesting conformal properties. It is invariant under conformal transformations. Moreover, its metric variation produces conformal tensor which is a generalization of the Cotton tensor to dimension d+1=4k1,kZd+1=4k-1, k\in Z. We calculate the modification of the holographic stress-energy tensor that is due to the Chern-Simons term and use the bulk Einstein equations to find its divergence and thus reproduce the gravitational anomaly. Explicit calculation of the anomaly is carried out in dimensions d=2d=2 and d=6d=6. The result of the holographic calculation is compared with that of the descent method and agreement is found. The gravitational Chern-Simons term originates by Kaluza-Klein mechanism from a one-loop modification of M-theory action. This modification is discussed in the context of the gravitational anomaly in six-dimensional (2,0)(2,0) theory. The agreement with earlier conjectured anomaly is found.Comment: 24 pages, Latex; presentation re-structured, new references adde
    corecore