53 research outputs found

    A Case Study of Crowdsourcing Imagery Coding in Natural Disasters

    No full text
    Crowdsourcing and open licensing allow more people to participate in research and humanitarian activities. Open data, such as geographic information shared through OpenStreetMap and image datasets from disasters, can be useful for disaster response and recovery work. This chapter shares a real-world case study of humanitarian-driven imagery analysis, using open-source crowdsourcing technology. Shared philosophies in open technologies and digital humanities, including remixing and the wisdom of the crowd, are reflected in this case study.This research was funded through the European Commission FP7-ICT project: Citizen Cyberlab: Technology Enhanced Creative Learning in the field of Citizen Cyberscience

    Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference

    Get PDF
    BACKGROUND: Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesvirinae, is spread via nasal secretions and causes respiratory disease, neurological disorders and abortions. The virus is a significant equine pathogen, but current EHV-1 vaccines are only partially protective and effective metaphylactic and therapeutic agents are not available. Small interfering RNAs (siRNA's), delivered intranasally, could prove a valuable alternative for infection control. siRNA's against two essential EHV-1 genes, encoding the viral helicase (Ori) and glycoprotein B, were evaluated for their potential to decrease EHV-1 infection in a mouse model. METHODOLOGY/PRINCIPAL FNDINGS: siRNA therapy in vitro significantly reduced virus production and plaque size. Viral titers were reduced 80-fold with 37.5 pmol of a single siRNA or with as little as 6.25 pmol of each siRNA when used in combination. siRNA therapy in vivo significantly reduced viral replication and clinical signs. Intranasal treatment did not require a transport vehicle and proved effective when given up to 12 h before or after infection. CONCLUSIONS/SIGNIFICANCE: siRNA treatment has potential for both prevention and early treatment of EHV-1 infections

    Cytosolic SYT/SS18 Isoforms Are Actin-Associated Proteins that Function in Matrix-Specific Adhesion

    Get PDF
    SYT (SYnovial sarcoma Translocated gene or SS18) is widely produced as two isoforms, SYT/L and SYT/S, that are thought to function in the nucleus as transcriptional coactivators. Using isoform-specific antibodies, we detected a sizable pool of SYT isoforms in the cytosol where the proteins were organized into filamentous arrays. Actin and actin-associated proteins co-immunoprecipitated with SYT isoforms, which also co-sedimented and co-localized with the actin cytoskeleton in cultured cells and tissues. The association of SYT with actin bundles was extensive yet stopped short of the distal ends at focal adhesions. Disruption of the actin cytoskeleton also led to a breakdown of the filamentous organization of SYT isoforms in the cytosol. RNAi ablation of SYT/L alone or both isoforms markedly impaired formation of stress fibers and focal adhesions but did not affect formation of cortical actin bundles. Furthermore, ablation of SYT led to markedly impaired adhesion and spreading on fibronectin and laminin-111 but not on collagen types I or IV. These findings indicate that cytoplasmic SYT isoforms interact with actin filaments and function in the ability cells to bind and react to specific extracellular matrices

    An Equine Herpesvirus Type 1 (EHV-1) Expressing VP2 and VP5 of Serotype 8 Bluetongue Virus (BTV-8) Induces Protection in a Murine Infection Model

    Get PDF
    Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economic losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) started in northern Europe that caused significant disease in cattle and sheep before comprehensive vaccination was introduced two years later. Here, we evaluate the potential of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus, as a novel vectored DIVA (differentiating infected from vaccinated animals) vaccine expressing VP2 of BTV-8 alone or in combination with VP5. The EHV-1 recombinant viruses stably expressed the transgenes and grew with kinetics that were identical to those of parental virus in vitro. After immunization of mice, a BTV-8-specific neutralizing antibody response was elicited. In a challenge experiment using a lethal dose of BTV-8, 100% of interferon-receptor-deficient (IFNAR−/−) mice vaccinated with the recombinant EHV-1 carrying both VP2 and VP5, but not VP2 alone, survived. VP7 was not included in the vectored vaccines and was successfully used as a DIVA marker. In summary, we show that EHV-1 expressing BTV-8 VP2 and VP5 is capable of eliciting a protective immune response that is distinguishable from that after infection and as such may be an alternative for BTV vaccination strategies in which DIVA compatibility is of importance

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF

    Rasa3 Controls Megakaryocyte Rap1 Activation, Integrin Signaling and Differentiation into Proplatelet

    Full text link
    Rasa3 is a GTPase activating protein of the GAP1 family which targets Ras and Rap1. Ubiquitous Rasa3 catalytic inactivation in mouse results in early embryonic lethality. Here, we show that Rasa3 catalytic inactivation in mouse hematopoietic cells results in a lethal syndrome characterized by severe defects during megakaryopoiesis, thrombocytopenia and a predisposition to develop preleukemia. The main objective of this study was to define the cellular and the molecular mechanisms of terminal megakaryopoiesis alterations. We found that Rasa3 catalytic inactivation altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet forming megakaryocytes. These megakaryocyte alterations were associated with an increased active Rap1 level and a constitutive integrin activation. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia associated with an increased percentage of megakaryocytes in the bone marrow, bone marrow fibrosis, extramedular hematopoiesis, splenomegaly and premature death. Altogether, our results indicate that Rasa3 catalytic activity controls Rap1 activation and integrin signaling during megakaryocyte differentiation in mouse

    CCL2 and CCL5 driven attraction of CD172a+ monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC)

    Get PDF
    International audienceAbstractEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recruited to the infection sites in order to pick up virus is unknown. In our study, equine nasal mucosa explants were inoculated with EHV-1 neurological strains 03P37 and 95P105 or the non-neurological strains 97P70 and 94P247 and the migration of monocytic cells was examined by immunofluorescence. Further, the role of monokines CCL2 and CCL5 was determined and the effect of migration inhibitors rosiglitazone (RSG) or quinacrine was analyzed. It was shown that with neurological strains but not with the non-neurological strains, CD172a+ cells specifically migrated towards EHV-1 infected regions and that CCL2 and CCL5 were involved. CCL2 started to be expressed in infected epithelial cells at 24 h post-incubation (hpi) and CCL5 at 48 hpi, which corresponded with the CD172a+ migration. RSG treatment of EHV-1-inoculated equine nasal mucosa had no effect on the virus replication in the epithelium, but decreased the migration of CD172a+ cells in the lamina propria. Overall, these findings bring new insights in the early pathogenesis of EHV-1 infections, illustrate differences between neurological and non-neurological strains and show the way for EHV-1 treatment
    corecore