105 research outputs found

    Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species

    Get PDF
    Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection

    Anaerobic removal of 1-methoxy-2-propanol under ambient temperature in an EGSB reactor

    Get PDF
    Two laboratory-scale expanded granular sludge bed (EGSB) reactors were operated at 18 and 25 C, respectively, for the treatment of synthetic wastewater composed of ethanol and 1-methoxy-2-propanol (M2P) in a mass ratio of 4:1. Reactors were operated first with continuous wastewater supply and after with discontinuous substrate supply (5 days a week, 16 h a day) to simulate shift working conditions. Under continuous wastewater supply chemical oxygen demand (COD), removal efficiency higher than 95 % was achieved at the end of the trial applying organic loading rates (OLR) of 29 and 43 kg COD m-3 day-1 at 18 and 25 C; thus, corresponding to M2P OLR of 6.4 and 9.3 kg COD m-3 day-1, respectively. During intermittent supply of substrate, good performance was recorded at both temperatures with an OLR of 30 kg COD m-3 day-1 (M2P OLR of 6.6 kg COD m-3 day-1). After 56 h without substrate supply, a decline in methane yield of 15¿30 % was observed due to the deactivation of the biomass. Specific methanogenic activity (SMA) assays were carried out at the end of the experiments. SMA values using 1-methoxy-2-propanol as substrate were 24.3 and 7.8 ml CH4 gVSS-1 day-1 at 25 C and at 18 C, respectively. This is the first attempt to investigate the removal of 1-methoxy-2-propanol by EGSB reactors

    Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats

    Get PDF
    Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol

    High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    Get PDF
    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon\u27s (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits
    corecore