769 research outputs found
Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance
We generalize the coset construction of Callan, Coleman, Wess and Zumino to
theories in which the Lorentz group is spontaneously broken down to one of its
subgroups. This allows us to write down the most general low-energy effective
Lagrangian in which Lorentz invariance is non-linearly realized, and to explore
the consequences of broken Lorentz symmetry without having to make any
assumptions about the mechanism that triggers the breaking. We carry out the
construction both in flat space, in which the Lorentz group is a global
spacetime symmetry, and in a generally covariant theory, in which the Lorentz
group can be treated as a local internal symmetry. As an illustration of this
formalism, we construct the most general effective field theory in which the
rotation group remains unbroken, and show that the latter is just the
Einstein-aether theory.Comment: 45 pages, no figures
On the structure of maximal solvable extensions and of Levi extensions of nilpotent algebras
We establish an improved upper estimate on dimension of any solvable algebra
s with its nilradical isomorphic to a given nilpotent Lie algebra n. Next we
consider Levi decomposable algebras with a given nilradical n and investigate
restrictions on possible Levi factors originating from the structure of
characteristic ideals of n. We present a new perspective on Turkowski's
classification of Levi decomposable algebras up to dimension 9.Comment: 21 pages; major revision - one section added, another erased;
author's version of the published pape
Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach
Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique
Lorentz violation, Gravity, Dissipation and Holography
We reconsider Lorentz Violation (LV) at the fundamental level. We show that
Lorentz Violation is intimately connected with gravity and that LV couplings in
QFT must always be fields in a gravitational sector. Diffeomorphism invariance
must be intact and the LV couplings transform as tensors under coordinate/frame
changes. Therefore searching for LV is one of the most sensitive ways of
looking for new physics, either new interactions or modifications of known
ones. Energy dissipation/Cerenkov radiation is shown to be a generic feature of
LV in QFT. A general computation is done in strongly coupled theories with
gravity duals. It is shown that in scale invariant regimes, the energy
dissipation rate depends non-triviallly on two characteristic exponents, the
Lifshitz exponent and the hyperscaling violation exponent.Comment: LateX, 51 pages, 9 figures. (v2) References and comments added.
Misprints correcte
All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n-1
We construct all solvable Lie algebras with a specific n-dimensional
nilradical n_(n,2) (of degree of nilpotency (n-1) and with an (n-2)-dimensional
maximal Abelian ideal). We find that for given n such a solvable algebra is
unique up to isomorphisms. Using the method of moving frames we construct a
basis for the Casimir invariants of the nilradical n_(n,2). We also construct a
basis for the generalized Casimir invariants of its solvable extension s_(n+1)
consisting entirely of rational functions of the chosen invariants of the
nilradical.Comment: 19 pages; added references, changes mainly in introduction and
conclusions, typos corrected; submitted to J. Phys. A, version to be
publishe
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
HCV genotypes are differently prone to the development of resistance to linear and macrocyclic protease inhibitors
Because of the extreme genetic variability of hepatitis C virus (HCV), we analyzed whether specific HCV-genotypes are differently prone to develop resistance to linear and macrocyclic protease-inhibitors (PIs)
Sexual dimorphism in cancer.
The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment
Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi
Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users
Urological complication following aortoiliac graft: case report and review of the literature
- …
