We generalize the coset construction of Callan, Coleman, Wess and Zumino to
theories in which the Lorentz group is spontaneously broken down to one of its
subgroups. This allows us to write down the most general low-energy effective
Lagrangian in which Lorentz invariance is non-linearly realized, and to explore
the consequences of broken Lorentz symmetry without having to make any
assumptions about the mechanism that triggers the breaking. We carry out the
construction both in flat space, in which the Lorentz group is a global
spacetime symmetry, and in a generally covariant theory, in which the Lorentz
group can be treated as a local internal symmetry. As an illustration of this
formalism, we construct the most general effective field theory in which the
rotation group remains unbroken, and show that the latter is just the
Einstein-aether theory.Comment: 45 pages, no figures