78 research outputs found

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Understanding atrioventricular septal defect: Anatomoechocardiographic correlation

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Correlate the anatomic features of atrioventricular septal defect with echocardiographic images.</p> <p>Materials and methods</p> <p>Sixty specimen hearts were studied by sequential segmental analysis. Echocardiograms were performed on 34 patients. Specimen hearts with findings equivalent to those of echocardiographic images were selected in order to establish an anatomo-echocardiographic correlation.</p> <p>Results</p> <p>Thirty-three specimen hearts were in situs solitus, 19 showed dextroisomerism, 6 were in situs inversus and 2 levoisomerism. Fifty-eight had a common atrioventricular valve and 2 had two atrioventricular valves. Rastelli types were determined in 21 hearts. Nine were type A, 2 intermediate between A and B, 1 mixed between A and B, 4 type B and 5 type C. Associated anomalies included pulmonary stenosis, pulmonary atresia atrial septal defect, patent ductus arteriosus and anomalous connection of pulmonary veins. Echocardiograms revealed dextroisomerism in 12 patients, situs solitus in 11, levoisomerism in 7 and situs inversus in 4. Thirty-one patients had common atrioventricular valves and three two atrioventricular valves. Rastelli types were established in all cases with common atrioventricular valves; 17 had type A canal defects, 10 type B, 3 intermediate between A and B, 1 mixed between A and B and 3 type C. Associated anomalies included regurgitation of the atrioventricular valve, pulmonary stenosis, anomalous connection of pulmonary veins, pulmonary hypertension and pulmonary atresia.</p> <p>Conclusion</p> <p>Anatomo-echocardiographic correlation demonstrated a high degree of diagnostic precision with echocardiography.</p

    Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement

    Get PDF
    Purpose: To investigate methods developed for the characterisation of the morphology and enhancement kinetic features of both mass and non-mass lesions, and to determine their diagnostic performance to differentiate between malignant and benign lesions that present as mass versus non-mass types. Methods: Quantitative analysis of morphological features and enhancement kinetic parameters of breast lesions were used to differentiate among four groups of lesions: 88 malignant (43 mass, 45 non-mass) and 28 benign (19 mass, 9 non-mass). The enhancement kinetics was measured and analysed to obtain transfer constant (Ktrans) and rate constant (kep). For each mass eight shape/margin parameters and 10 enhancement texture features were obtained. For the lesions presenting as nonmass-like enhancement, only the texture parameters were obtained. An artificial neural network (ANN) was used to build the diagnostic model. Results: For lesions presenting as mass, the four selected morphological features could reach an area under the ROC curve (AUC) of 0.87 in differentiating between malignant and benign lesions. The kinetic parameter (kep) analysed from the hot spot of the tumour reached a comparable AUC of 0.88. The combined morphological and kinetic features improved the AUC to 0.93, with a sensitivity of 0.97 and a specificity of 0.80. For lesions presenting as non-mass-like enhancement, four texture features were selected by the ANN and achieved an AUC of 0.76. The kinetic parameter kepfrom the hot spot only achieved an AUC of 0.59, with a low added diagnostic value. Conclusion: The results suggest that the quantitative diagnostic features can be used for developing automated breast CAD (computer-aided diagnosis) for mass lesions to achieve a high diagnostic performance, but more advanced algorithms are needed for diagnosis of lesions presenting as non-mass-like enhancement. © The Author(s) 2009

    Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes

    Get PDF
    There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease

    Measurement of the mass difference m(D-s(+))-m(D+) at CDF II

    Get PDF
    We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2)

    Limit of Indication for Plication of Giant Left Atrium

    No full text

    Renal transplantation from cadaveric donor after myocardial revascularization: still a matter of concern?

    No full text
    Renal transplantation in patients who have undergone coronary revascularization remains a matter of concern, few experiences have been reported in literature. From January 1997 to March 2003, 23 previously revascularized patients underwent renal transplants from cadaveric donors. We analyzed patient survival and cardiac events in this group of patients (group A) versus a similar population of 38 revascularized patients who were still on dialysis (group B) on the active waiting list (awl). After a similar follow-up (29.30 +/- 21.34 months versus 32.98 +/- 31.33 months; P = .56), survival was 100% for renal transplant patients and 94.74% for dialysis patients, two of whom (5.26%) died from acute myocardial infarction and four (10.52%) were excluded from the waiting list because of cardiac problems. The event-person ratio was 0.51 for group A patients (75% of events clustered within the first 6 months) and 0.71 for group B. The need for therapy with nitrates decreased from 11/23 (47.8%) to 6/23 (26%) after transplant. The ejection fraction remained stable (53.82% +/- 10.4% vs pre-Tx value of 54.8% +/- 9.4%). Renal survival was 100% (sCr = 1.4 +/- 0.4 mg/dL). Although no statistical significance has emerged, there was a general trend in favor of transplanted patients. On the basis of this experience we believe that coronary revascularization per se should no longer be a matter of concern for renal transplantation, which could be superior to dialysis for this type of patient
    • …
    corecore