33 research outputs found

    Analyzing redshift surveys to measure the power spectrum on large scales

    Get PDF
    Upcoming large redshift surveys potentially allow precision measurements of the galaxy power spectrum. To accurately measure P(k) on the largest scales, comparable to the depth of the survey, it is crucial that finite volume effects are accurately corrected for in the data analysis. Here we derive analytic expressions for the one such effect that has not previously been worked out exactly: that of the so-called integral constraint. We also show that for data analysis methods based on counts in cells, multiple constraints can be included via simple matrix operations, thereby rendering the results less sensitive to galactic extinction and misestimates of the shape of the radial selection function.Comment: Mostly superseded by astro-ph/9708020; from 5/5-97. 10 pages, with 1 figure included. More detailed treatment at http://www.sns.ias.edu/~max/galpower.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/galpower.html (faster from Europe) or from [email protected]

    Angiomyofibroblastoma of the spermatic cord: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Angiomyofibroblastoma is a benign soft tissue tumor with tendency to arise in the vulva.</p> <p>Case presentation</p> <p>We report a 36-year-old Greek Caucasian man presenting with a left inguinal painless mass. This is the second case of angiomyofibroblastoma of the spermatic cord. At operation, a 4.5 cm well-circumscribed solid tumor was found adherent to the spermatic cord. The tumor consisted of spindle-shaped cells proliferating in short fascicles between numerous medium-sized blood vessels with thin and hyalinized walls. Neoplastic cells had eosinophilic cytoplasm with neither mitotic figures nor nuclear atypia. The stroma included abundant mast cells and few mature lypocytes. Immunostaining showed positivity for vimentin, CD34, desmin and smooth muscle actin. Our patient was treated by simple excision and was followed up for five years with clinical examination and ultrasonography, revealing no evidence of local recurrence or metastasis.</p> <p>Conclusion</p> <p>This unusual neoplasm should be distinguished from aggressive angiomyxoma and other myxoid malignant tumors with widespread metastatic potential.</p

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Get PDF
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Modeling the accretion history of supermassive black holes

    Full text link
    There is overwhelming evidence for the presence of supermassive black holes (SMBHs) in the centers of most nearby galaxies. The mass estimates for these remnant black holes from the stellar kinematics of local galaxies and the quasar phenomenon at high redshifts point to the presence of assembled SMBHs. The accretion history of SMBHs can be reconstructed using observations at high and low redshifts as model constraints. Observations of galaxies and quasars in the submillimeter, infrared, optical, and X-ray wavebands are used as constraints, along with data from the demography of local black holes. Theoretical modeling of the growth of black hole mass with cosmic time has been pursued thus far in two distinct directions: a phenomenological approach that utilizes observations in various wavebands, and a semi-analytic approach that starts with a theoretical framework and a set of assumptions with a view to matching observations. Both techniques have been pursued in the context of the standard paradigm for structure formation in a Cold Dark Matter dominated universe. Here, we examine the key issues and uncertainties in the theoretical understanding of the growth of SMBHs.Comment: 19 pages, 4 figures, to appear as Chapter 4 in "Supermassive Black Holes in the Distant Universe" (2004), ed. A. J. Barger, Kluwer Academic Publishers, in pres

    The PSCz catalogue

    No full text
    We present the catalogue, mask, redshift data and selection function for the PSCz survey of 15411 IRAS galaxies across 84% of the sky. Most of the IRAS data is taken from the Point Source Catalog, but this has been supplemented and corrected in various ways to improve the completeness and uniformity. We quantify the known imperfections in the catalogue, and we assess the overall uniformity, completeness and data quality. We find that overall the catalogue is complete and uniform to within a few percent at high latitudes and 10% at low latitudes. Ancillary information, access details, guidelines and caveats for using the catalogue are given.Comment: 10 pages, submitted to MNRAS Oct 1999, accepted 8 March 2000. Includes details for data acces
    corecore