It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version