626 research outputs found

    Neutrinos Have Mass - So What?

    Full text link
    In this brief review, I discuss the new physics unveiled by neutrino oscillation experiments over the past several years, and discuss several attempts at understanding the mechanism behind neutrino masses and lepton mixing. It is fair to say that, while significant theoretical progress has been made, we are yet to construct a coherent picture that naturally explains non-zero, yet tiny, neutrino masses and the newly revealed, puzzling patterns of lepton mixing. I discuss what the challenges are, and point to the fact that more experimental input (from both neutrino and non-neutrino experiments) is dearly required - and that new data is expected to reveal, in the next several years, new information. Finally, I draw attention to the fact that neutrinos may have only just begun to reshape fundamental physics, given the fact that we are still to explain the LSND anomaly and because the neutrino oscillation phenomenon is ultimately sensitive to very small new-physics effects.Comment: invited brief review, 15 pages, 1 eps figure, typo corrected, reference adde

    The Physical Range of Majorana Neutrino Mixing Parameters

    Full text link
    If neutrinos are Majorana fermions, the lepton mixing parameter space consists of six mixing parameters: three mixing angles and three CP-odd phases. A related issue concerns the physical range of the mixing parameters. What values should these take so that all physically distinguishable mixing scenarios are realized? We present a detailed discussion of the lepton mixing parameter space in the case of two and three active neutrinos, and in the case of three active and N sterile neutrinos. We emphasize that this question, which has been a source of confusion even among "neutrino" physicists, is connected to an unambiguous definition of the neutrino mass eigenstates. We find that all Majorana phases can always be constrained to lie between 0 and pi, and that all mixing angles can be chosen positive and at most less than or equal to pi/2 provided the Dirac phases are allowed to vary between -pi and pi. We illustrate our results with several examples. Finally, we point out that, in the case of new flavor-changing neutrino interactions, the lepton mixing parameter space may need to be enlarged. We properly qualify this statement, and offer concrete examples.Comment: 16 pages, 2 .eps figures, references added, minor typos correcte

    Anarchy and Hierarchy

    Get PDF
    We advocate a new approach to study models of fermion masses and mixings, namely anarchy proposed in hep-ph/9911341. In this approach, we scan the O(1) coefficients randomly. We argue that this is the correct approach when the fundamental theory is sufficiently complicated. Assuming there is no physical distinction among three generations of neutrinos, the probability distributions in MNS mixing angles can be predicted independent of the choice of the measure. This is because the mixing angles are distributed according to the Haar measure of the Lie groups whose elements diagonalize the mass matrices. The near-maximal mixings, as observed in the atmospheric neutrino data and as required in the LMA solution to the solar neutrino problem, are highly probable. A small hierarchy between the Delta m^2 for the atmospheric and the solar neutrinos is obtained very easily; the complex seesaw case gives a hierarchy of a factor of 20 as the most probable one, even though this conclusion is more measure-dependent. U_{e3} has to be just below the current limit from the CHOOZ experiment. The CP-violating parameter sin delta is preferred to be maximal. We present a simple SU(5)-like extension of anarchy to the charged-lepton and quark sectors which works well phenomenologically.Comment: 26 page

    Neutrino Masses and Lepton Flavour Violation in Thick Brane Scenarios

    Get PDF
    We address the issue of lepton flavour violation and neutrino masses in the ``fat-brane'' paradigm, where flavour changing processes are suppressed by localising different fermion field wave-functions at different positions (in the extra dimensions) in a thick brane. We study the consequences of suppressing lepton number violating charged lepton decays within this scenario for lepton masses and mixing angles. In particular, we find that charged lepton mass matrices are constrained to be quasi-diagonal. We further consider whether the same paradigm can be used to naturally explain small Dirac neutrino masses by considering the existence of three right-handed neutrinos in the brane, and discuss the requirements to obtain phenomenologically viable neutrino masses and mixing angles. Finally, we examine models where neutrinos obtain a small Majorana mass by breaking lepton number in a far away brane and show that, if the fat-brane paradigm is the solution to the absence of lepton number violating charged lepton decays, such models predict, in the absence of flavour symmetries, that charged lepton flavour violation will be observed in the next round of rare muon/tau decay experiments.Comment: 33 pages, 9 eps figure

    Development of a Solar Panel Control Strategy for Tracking Maximum Power Generation / Desenvolvimento de uma estratégia de controlo de painéis solares para rastrear a produção måxima de energia

    Get PDF
    The solar panel is an essential energy conversion component of photovoltaic (PV) systems, an indispensable key for converting clean and sustainable solar energy into electricity. Over the last few years, there has been a growing demand for renewable sources due to sustainable development and global warming.  Therefore, this work  describes  the  prototype  of an electronic supervision and control system  for  the  orientation  of  a  bench  solar  panel. The developed tracker prototype has as its core an electronic circuit based on a commercial microcontroller model Tennsy 3.0, within which the control algorithm is embedded. In addition to the controller, a supervisory software was developed to monitor solar cells’ status in real-time. The supervisory showed the angle of the solar plate and values of luminosity and acquired power. Simulations results were presented to show that the amount of energy generated can   reach 37 %.

    Can a CPT Violating Ether Solve ALL Electron (Anti)Neutrino Puzzles?

    Get PDF
    Assuming that CPT is violated in the neutrino sector seems to be a viable alternative to sterile neutrinos when it comes to reconciling the LSND anomaly with the remainder of the neutrino data. There are different (distinguishable) ways of incorporating CPT violation into the standard model, including postulating m different from \bar{m}. Here, I investigate the possibility of introducing CPT violation via Lorentz-invariance violating effective operators (``Ether'' potentials) which modify neutrino oscillation patterns like ordinary matter effects. I argue that, within a simplified two-flavor like oscillation analysis, one cannot solve the solar neutrino puzzle and LSND anomaly while still respecting constraints imposed by other neutrino experiments, and comment on whether significant improvements should be expected from a three-flavor analysis. If one turns the picture upside down, some of the most severe constrains on such CPT violating terms can already be obtained from the current neutrino data, while much more severe constraints can arise from future neutrino oscillation experiments.Comment: 10 pages, 1 eps figure; version to appear in PRD. Comment added, mistake corrected, results and conclusions unchange
    • 

    corecore