8,784 research outputs found
A scalable PC-based parallel computer for lattice QCD
A PC-based parallel computer for medium/large scale lattice QCD simulations
is suggested. The Eotvos Univ., Inst. Theor. Phys. cluster consists of 137
Intel P4-1.7GHz nodes. Gigabit Ethernet cards are used for nearest neighbor
communication in a two-dimensional mesh. The sustained performance for
dynamical staggered(wilson) quarks on large lattices is around 70(110) GFlops.
The exceptional price/performance ratio is below $1/Mflop.Comment: 3 pages, 2 figures, Lattice2002(machines
A quasi-linear control theory analysis of timesharing skills
The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation
Further observations on the relationship of EMG and muscle force
Human skeletal muscle may be regarded as an electro-mechanical transducer. Its physiological input is a neural signal originating at the alpha motoneurons in the spinal cord and its output is force and muscle contraction, these both being dependent on the external load. Some experimental data taken during voluntary efforts around the ankle joint and by direct electrical stimulation of the nerve are described. Some of these experiments are simulated by an analog model, the input of which is recorded physiological soleus muscle EMG. The output is simulated foot torque. Limitations of a linear model and effect of some nonlinearities are discussed
Tempered Fermions in the Hybrid Monte Carlo Algorithm
Parallel tempering simulates at many quark masses simultaneously, by changing
the mass during the simulation while remaining in equilibrium. The algorithm is
faster than pure HMC if more than one mass is needed, and works better the
smaller the smallest mass is.Comment: 4 pages, 2 figures, Combined proceedings for Lattice 97, Edinburgh
and the International Workshop 'Lattice QCD on Parallel Computers',
University of Tsukuba, Japa
Radiative Transitions in Charmonium from Lattice QCD
Radiative transitions between charmonium states offer an insight into the
internal structure of heavy-quark bound states within QCD. We compute, for the
first time within lattice QCD, the transition form-factors of various
multipolarities between the lightest few charmonium states. In addition, we
compute the experimentally unobservable, but physically interesting vector
form-factors of the and .
To this end we apply an ambitious combination of lattice techniques,
computing three-point functions with heavy domain wall fermions on an
anisotropic lattice within the quenched approximation. With an anisotropy
at we find a reasonable gross spectrum and a
hyperfine splitting , which compares favourably with
other improved actions.
In general, after extrapolation of lattice data at non-zero to the
photopoint, our results agree within errors with all well measured experimental
values. Furthermore, results are compared with the expectations of simple quark
models where we find that many features are in agreement; beyond this we
propose the possibility of constraining such models using our extracted values
of physically unobservable quantities such as the quadrupole moment.
We conclude that our methods are successful and propose to apply them to the
problem of radiative transitions involving hybrid mesons, with the eventual
goal of predicting hybrid meson photoproduction rates at the GlueX experiment.Comment: modified version as publishe
Scaling of Pseudo-Critical Couplings in Two-Flavour QCD
We study the scaling behaviour of the pseudo-critical couplings for the
chiral phase transition in two-flavour QCD. We show that all existing results
from lattice simulations on lattices with temporal extent , 6 and 8
can be mapped onto a universal scaling curve. The relevant combination of
critical exponents, , is consistent with the scaling behaviour
expected for a second order phase transition with exponents. At present,
scaling according to the symmetry group can, however, not be ruled out.Comment: 8 pages, NSF-ITP 93-12
Computational problems in autoregressive moving average (ARMA) models
The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models
Two-Flavor Staggered Fermion Thermodynamics at N_t = 12
We present results of an ongoing study of the nature of the high temperature
crossover in QCD with two light fermion flavors. These results are obtained
with the conventional staggered fermion action at the smallest lattice spacing
to date---approximately 0.1 fm. Of particular interest are a study of the
temperature of the crossover a determination of the induced baryon charge and
baryon susceptibility, the scalar susceptibility, and the chiral order
parameter, used to test models of critical behavior associated with chiral
symmetry restoration. From our new data and published results for N_t = 4, 6,
and 8, we determine the QCD magnetic equation of state from the chiral order
parameter using O(4) and mean field critical exponents and compare it with the
corresponding equation of state obtained from an O(4) spin model and mean field
theory. We also present a scaling analysis of the Polyakov loop, suggesting a
temperature dependent ``constituent quark free energy.''Comment: LaTeX 25 pages, 15 Postscript figure
Exceptional type-I superconductivity of the layered silver oxide AgPbO
We report zero-resistivity transition and the details of magnetic transition
of a layered silver oxide AgPbO single crystal, which make
definitive evidence of superconductivity in this compound. In the AC
susceptibility of a mono-crystal, we observed large supercooling, as well as
positive peaks in the real part of the susceptibility indicating the
reversibility of magnetic process. These observations reveal that
AgPbO is probably the first oxide that shows type-I
superconductivity. Evaluation of the superconducting parameters not only gives
confirming evidence of type-I superconductivity, but also indicates that it is
a dirty-limit superconductor. We also analyze supercooling to determine the
upper limit of the Ginzburg-Landau parameter.Comment: v2: PACS numbers are adde
Applications of spectral methods to turbulent magnetofluids in space and fusion research
Recent and potential applications of spectral method computation to incompressible, dissipative magnetohydrodynamics are surveyed. Linear stability problems for one dimensional, quasi-equilibria are approachable through a close analogue of the Orr-Sommerfeld equation. It is likely that for Reynolds-like numbers above certain as-yet-undetermined thresholds, all magnetofluids are turbulent. Four recent effects in MHD turbulence are remarked upon, as they have displayed themselves in spectral method computations: (1) inverse cascades; (2) small-scale intermittent dissipative structures; (3) selective decays of ideal global invariants relative to each other; and (4) anisotropy induced by a mean dc magnetic field. Two more conjectured applications are suggested. All the turbulent processes discussed are sometimes involved in current carrying confined fusion magnetoplasmas and in space plasmas
- …
