928 research outputs found

    Ozone and Other Air Pollutants and the Risk of Oral Clefts

    Get PDF

    Coronary angiographic morphology in myocardial infarction: A link between the pathogenesis of unstable angina and myocardial infarction

    Get PDF
    It has previously been shown that analysis of coronary morphology can separate unstable from stable angina. An eccentric stenosis with a narrow neck or irregular borders, or both, is very common in patients who present with acute unstable angina, whereas it is rare in patients with stable angina. To extend these observations to myocardial infarction, the coronary morphology of 41 patients with acute or recent infarction and nontotally occluded infarct vessels was studied. For all patients, 27 (66%) of 41 infarct vessels contained this eccentric narrowing, whereas only 2 (11%) of 18 noninfarct vessels with narrowing of 50 to less than 100% had this lesion (p < 0.001). In addition, a separate group of patients with acute myocardial infarction who underwent intracoronary streptokinase infusion were also analyzed in similar fashion. Fourteen (61%) of 23 infarct vessels contained this lesion after streptokinase infusion compared with 1 (9%) of 11 noninfarct vessels with narrowing of 50 to less than 100% (p < 0.01).Therefore, an eccentric coronary stenosis with a narrow neck or irregular borders, or both, is the most common morphologic feature on angiography in both acute and recent infarction as well as unstable angina. This lesion probably represents either a disrupted atherosclerotic plaque or a partially occlusive or lysed thrombus, or both. The predominance of this morphology in both unstable angina and acute infarction suggests a possible link between these two conditions. Unstable angina and myocardial infarction may form a continuous spectrum with the clinical outcome dependent on the subsequent change in coronary supply relative to myocardial demand

    Manganese oxide catalysts for secondary zinc air batteries: from

    Get PDF
    An efficient, durable and low cost air cathode with low polarization between the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for a high performance and durable secondary zinc-air battery. Different valence states and morphologies of MnxOy catalysts were synthetized via thermal treatment of EMD (generating Mn2O3 and Mn3O4) and acid digestion of synthetized Mn2O3 (producing a-MnO2) in order to develop an efficient Bifunctional Air Electrode (BAE). Change in the ratio H+ to Mn2O3 during the acid digestion affects the sample microporosity, the crystallographic plane distribution, as well as the physical and chemical adsorbed water which was related to defects, i.e. cation vacancies (Mn4+) and Mn3+. These characteristics were discussed and linked to the electrocatalytic activity. The best ORR performing catalyst was that with the higher surface water content (associated to material BET surface area) and a (310) surface as the 2nd more contributing plane (after 211). On the other hand, the catalyst with the higher structural water and with (110) and (200) crystallographic planes being the most intensity contributors (after 211) was the most OER active material. In this work, it was able to find a relationship between catalyst structure and air-efficiency through a volcano-like relationship between air-efficiency and surface water content. Air-efficiency (also take as round-efficiency discharge/charge in battery context) can be taken as a good descriptor of potentially good materials for Zn-Air secondary batteries technology. In this term, we were able to prepare a Bifunctional Air Electrode based on the selected a-MnO2 sample which demonstrated a roundefficiency of 53%, a DV around 1 V and a neglected loss of the charge potential (about 2.1 V) over the entire lifecycle test (more 200 cycles over 30 hours) with a capacity retention superior to 95%.European Commission H2020: Proyecto ZAS “Zinc Air Secondary innovative nanotech based batteries for efficient energy storage” (Grant Agreement 646186

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK

    Get PDF
    Craniometaphyseal dysplasia (CMD) is a rare skeletal disorder characterized by progressive thickening and increased mineral density of craniofacial bones and abnormally developed metaphyses in long bones. Linkage studies mapped the locus for the autosomal dominant form of CMD to an similar to5-cM interval on chromosome 5p, which is defined by recombinations between loci D5S810 and D5S1954. Mutational analysis of positional candidate genes was performed, and we describe herein three different mutations, in five different families and in isolated cases, in ANK, a multipass transmembrane protein involved in the transport of intracellular pyrophosphate into extracellular matrix. the mutations are two in-frame deletions and one in-frame insertion caused by a splicing defect. All mutations cluster within seven amino acids in one of the six possible cytosolic domains of ANK. These results suggest that the mutated protein has a dominant negative effect on the function of ANK, since reduced levels of pyrophosphate in bone matrix are known to increase mineralization.Harvard Sch Dent Med, Forsyth Inst, Harvard Forsyth Dept Oral Biol, Boston, MA 02115 USAHarvard Univ, Sch Med, Childrens Hosp, Dept Cell Biol, Boston, MA USAHarvard Univ, Sch Med, Childrens Hosp, Dept Genet, Boston, MA USAHarvard Univ, Sch Med, Childrens Hosp, Div Plast Surg, Boston, MA USAUniversidade Federal de São Paulo, EPM, Campinas, SP, BrazilInst Cirurg Plast Craniofacial SOBRAPAR, Campinas, SP, BrazilShowa Univ, Sch Med, Dept Plast & Reconstruct Surg, Tokyo 142, JapanVirginia Commonwealth Univ, Med Coll Virginia, Dept Human Genet, Richmond, VA 23298 USASt Louis Univ, Sch Med, Cardinal Glennon Childrens Hosp, Div Med Genet, St Louis, MO 63104 USAUniv Cape Town, Sch Med, Dept Human Genet, ZA-7925 Cape Town, South AfricaOhio State Univ, Coll Dent, Dept Orthodont, Columbus, OH 43210 USAChildrens Hosp, Dept Genet, Columbus, OH 43205 USAUniv Minnesota, Sch Dent, Dept Oral Biol & Genet, Minneapolis, MN 55455 USAUniversidade Federal de São Paulo, EPM, Campinas, SP, BrazilWeb of Scienc

    Gorlin syndrome associated with small bowel carcinoma and mesenchymal proliferation of the gastrointestinal tract: case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Background and Case Presentation</p> <p>A patient with nevoid basal cell carcinoma syndrome (Gorlin syndrome) presented with two unusual clinical features, i.e. adenocarcinoma of the small bowel and extensive mesenchymal proliferation of the lower gastrointestinal tract.</p> <p>Conclusions</p> <p>We discuss the possibility that these two features are pathogenetically linked to the formerly undescribed patient's <it>PTCH </it>germ line mutation.</p
    corecore