687 research outputs found

    High efficiency thermionic converter studies

    Get PDF
    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion

    Introduction to dynamical horizons in numerical relativity

    Full text link
    This paper presents a quasi-local method of studying the physics of dynamical black holes in numerical simulations. This is done within the dynamical horizon framework, which extends the earlier work on isolated horizons to time-dependent situations. In particular: (i) We locate various kinds of marginal surfaces and study their time evolution. An important ingredient is the calculation of the signature of the horizon, which can be either spacelike, timelike, or null. (ii) We generalize the calculation of the black hole mass and angular momentum, which were previously defined for axisymmetric isolated horizons to dynamical situations. (iii) We calculate the source multipole moments of the black hole which can be used to verify that the black hole settles down to a Kerr solution. (iv) We also study the fluxes of energy crossing the horizon, which describes how a black hole grows as it accretes matter and/or radiation. We describe our numerical implementation of these concepts and apply them to three specific test cases, namely, the axisymmetric head-on collision of two black holes, the axisymmetric collapse of a neutron star, and a non-axisymmetric black hole collision with non-zero initial orbital angular momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic content shortene

    Numerical relativity with characteristic evolution, using six angular patches

    Get PDF
    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue

    Relative palatability and efficacy of brodifacoum-25D conservation rodenticide pellets for mouse eradication on Midway Atoll

    Get PDF
    Invasive mice (Mus spp.) can negatively impact island species and ecosystems. Because fewer island rodent eradications have been attempted for mice compared to rats (Rattus spp.), less is known about efficacy and palatability of rodenticide baits for mouse eradications. We performed a series of bait acceptance and efficacy cage trials using a standard formulation of brodifacoum-based rodenticide on wild-caught mice from Sand Island, Midway Atoll, to help inform a proposed eradication there. Mice were offered ad libitum brodifacoum pellets along with various alternative food sources, and a “no choice” treatment group received only bait pellets. Mortality in the no choice trial was 100%; however, when offered alternative foods, mice preferred the alternative diets to the bait, leading to low mortality (40%). Because there was concern that the bittering agent Bitrex® in the formulation may have reduced palatability, we conducted a subsequent trial comparing brodifacoum bait with and without Bitrex. Mortality in the with-Bitrex treatment group was slightly higher, indicating that the bittering agent was not likely responsible for low efficacy. Laboratory trials cannot account for the numerous environmental and behavioral factors that influence bait acceptance nor replicate the true availability of alternative food sources in the environment, so low efficacy results from these trials should be interpreted cautiously and not necessarily as a measure of the likelihood of success or failure of a proposed eradication

    Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications

    Full text link
    We present new results from two open source codes, using finite differencing and pseudo-spectral methods for the wave equations in (3+1) dimensions. We use a hyperboloidal transformation which allows direct access to null infinity and simplifies the control over characteristic speeds on Kerr-Schild backgrounds. We show that this method is ideal for attaching hyperboloidal slices or for adapting the numerical resolution in certain spacetime regions. As an example application, we study late-time Kerr tails of sub-dominant modes and obtain new insight into the splitting of decay rates. The involved conformal wave equation is freed of formally singular terms whose numerical evaluation might be problematically close to future null infinity.Comment: 15 pages, 12 figure

    Stability of general-relativistic accretion disks

    Full text link
    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core-collapse of massive stars. We explore the stability of such disks against runaway and non-axisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the THOR code. We model the disk matter using the ideal fluid approximation with a Γ\Gamma-law equation of state with Γ=4/3\Gamma=4/3. We explore three disk models around non-rotating black holes with disk-to-black hole mass ratios of 0.24, 0.17 and 0.11. Due to metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m = 1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m = 1 mode in some cases. Overall, our simulations show that the properties of the unstable non-axisymmetric modes in our disk models are qualitatively similar to those in Newtonian theory.Comment: 30 pages, 21 figure

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Visual Fixations Duration as an Indicator of Skill Level in eSports

    Full text link
    Using highly interactive systems like computer games requires a lot of visual activity and eye movements. Eye movements are best characterized by visual fixation - periods of time when the eyes stay relatively still over an object. We analyzed the distributions of fixation duration of professional athletes, amateur and newbie players. We show that the analysis of fixation durations can be used to deduce the skill level in computer game players. Highly skilled gaming performance is characterized by more variability in fixation durations and by bimodal fixation duration distributions suggesting the presence of two fixation types in high skill gamers. These fixation types were identified as ambient (automatic spatial processing) and focal (conscious visual processing). The analysis of computer gamers' skill level via the analysis of fixation durations may be used in developing adaptive interfaces and in interface design.Comment: 10 pages, 3 figure

    The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics

    Get PDF
    The topic of vision-based grasping is being widely studied using various techniques and with different goals in humans and in other primates. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved in them is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic application

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her
    • …
    corecore