9 research outputs found

    Toxicity assessment of cobalt ferrite nanoparticles on wheat plants

    No full text
    <p>Cobalt ferrite nanoparticles (NPs) have received increasing attention due to their widespread therapeutic and agricultural applicability. In the environmental field, dry powder- and ferrofluid-suspended cobalt ferrite NPs were found to be useful for removing heavy metals and metalloids from water, while diluted suspensions of cobalt ferrite NP have been promisingly applied in medicine. However, the potential toxicological implications of widespread exposure are still unknown. Since cobalt ferrite NPs are considered residual wastes of environmental or medical applications, plants may serve as a point-of-entry for engineered nanomaterials as a result of consumption of these plants. Thus, the aim of this study was to assess the effects of dry powder and fresh cobalt ferrite NP on wheat plants. Seven-day assays were conducted, using quartz sand as the plant growth substrate. The toxicity end points measured were seed germination, root and shoot lengths, total cobalt (Co) and iron (Fe) accumulation, photosynthetic pigment production, protein (PRT) production, and activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). Increasing total Co and Fe in plant tissues indicated that wheat plants were exposed to cobalt ferrite NP. Seed germination and shoot length were not sufficiently sensitive toxicity end points. The effective concentration (EC<sub>50</sub>) that diminished root length of plants by 50% was 1963 mg/kg for fresh ferrite NPs and 5023 mg/kg for powder ferrite NP. Hence, fresh ferrite NPs were more toxic than powder NP. Plant stress was indicated by a significant decrease in photosynthetic pigments. CAT, APX, and GPX antioxidant enzymatic activity suggested the generation of reactive oxygen species and oxidative damage induced by cobalt ferrite NP. More studies are thus necessary to determine whether the benefits of using these NPs outweigh the risks.</p

    Micorriza arbuscular e a tolerĂąncia das plantas ao estresse

    No full text

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Dusty starbursts masquerading as ultra-high redshift galaxies in JWST CEERS observations

    No full text
    Lyman Break Galaxy (LBG) candidates at z ≳ 10 are rapidly being identified in JWST/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well-detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z â‰Č 7) may also mimic the near-infrared colors of z > 10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z ≈ 5.1. We also present a tentative 2.6σ SCUBA-2 detection at 850 ”m around a recently identified z ≈ 16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z ∌ 5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z ∌ 4 − 6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and 2 The CEERS collaboration strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra high-redshift LBG candidates from JWST observations

    Measurement of the fraction of jet longitudinal momentum carried by <math display="inline"><msubsup><mi mathvariant="normal">Λ</mi><mi>c</mi><mo>+</mo></msubsup></math> baryons in <math display="inline"><mi>p</mi><mi>p</mi></math> collisions

    No full text
    International audienceRecent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λc+ baryons, z∄ch, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at s=13  TeV at the LHC, with Λc+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≀pTΛc+&lt;15  GeV/c and 7≀pTjet ch&lt;15  GeV/c, respectively. The z∄ch distribution is compared to a measurement of D0-tagged charged jets in pp collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation
    corecore