32,480 research outputs found

    An explanation of the Δ5/2(1930)\Delta_{5/2^{-}}(1930) as a ρΔ\rho\Delta bound state

    Full text link
    We use the ρΔ\rho\Delta interaction in the hidden gauge formalism to dynamically generate NN^{\ast} and Δ\Delta^{\ast} resonances. We show, through a comparison of the results from this analysis and from a quark model study with data, that the Δ5/2(1930),\Delta_{5/2^{-}}(1930), Δ3/2(1940)\Delta_{3/2^{-}}(1940) and Δ1/2(1900)\Delta_{1/2^{-}}(1900) resonances can be assigned to ρΔ\rho\Delta bound states. More precisely the Δ5/2(1930)\Delta_{5/2^{-}}(1930) can be interpreted as a ρΔ\rho\Delta bound state whereas the Δ3/2(1940)\Delta_{3/2^{-}}(1940) and Δ1/2(1900)\Delta_{1/2^{-}}(1900) may contain an important ρΔ\rho\Delta component. This interpretation allows for a solution of a long-standing puzzle concerning the description of these resonances in constituent quark models. In addition we also obtain degenerate JP=1/2,3/2,5/2J^{P}=1/2^{-},3/2^{-},5/2^{-} NN^{*} states but their assignment to experimental resonances is more uncertain.Comment: 19 pags, 8 fig

    Generation of Multi-Scroll Attractors Without Equilibria Via Piecewise Linear Systems

    Get PDF
    In this paper we present a new class of dynamical system without equilibria which possesses a multi scroll attractor. It is a piecewise-linear (PWL) system which is simple, stable, displays chaotic behavior and serves as a model for analogous non-linear systems. We test for chaos using the 0-1 Test for Chaos of Ref.12.Comment: Corresponding Author: Eric Campos-Cant\'o

    Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors

    Full text link
    In this work, we compare the photodetector performance of single defect-free undoped and n-in GaN nanowires (NWs). In vacuum, undoped NWs present a responsivity increment, nonlinearities and persistent photoconductivity effects (~ 100 s). Their unpinned Fermi level at the m-plane NW sidewalls enhances the surface states role in the photodetection dynamics. Air adsorbed oxygen accelerates the carrier dynamics at the price of reducing the photoresponse. In contrast, in n-i-n NWs, the Fermi level pinning at the contact regions limits the photoinduced sweep of the surface band bending, and hence reduces the environment sensitivity and prevents persistent effects even in vacuum

    On the void explanation of the Cold Spot

    Get PDF
    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω\omega, the ISW contribution due to the presence of the void does not reproduce the properties of the CS. Finally, the probability of alignment between the void and the CS is also questioned as an argument in favor of a physical connection between these two phenomena

    Conservation agriculture in the dry Mediterranean climate

    Get PDF
    The objective of this article is to review: (a) the concepts and principles that underpin Conservation Agriculture (CA) ecologically and operationally; (b) the potential benefits that can be harnessed through CA systems in the dry Mediterranean climates; (c) current status of adoption and spread of CA in the dry Mediterranean climate countries; and (d) opportunities for CA in the Central and West Asia and North Africa (CWANA) region. CA, comprising minimum mechanical soil disturbance and no-tillage seeding, organic mulch cover, and crop diversification is now practised on some 125 million ha, corresponding to about 9% of the global arable cropped land. Globally, the area under CA is spread across all continents and all agro-ecologies, including the dryland climates in the Mediterranean basin region as well as in the Mediterranean climates elsewhere in the world. Worldwide empirical and scientific evidence is available to show that significant productivity, economic, social and environmental benefits exist that can be harnessed through the adoption of CA principles for sustainable production intensification in the dry Mediterranean climates, including those in the CWANA region. The benefits include: fundamental change for the better in the sustainability of production systems and ecosystem services; higher stable yields and incomes; climate change adaptation and reduced vulnerability to the highly erratic rainfall distribution; and reduced greenhouse gas emissions. CA has taken off globally and is now spreading in several Mediterranean climates outside the Mediterranean basin particularly in South America, South Africa and Australia. In the dry Mediterranean climates in the CWANA region, CA is perceived to be a powerful tool of land management but CA has not yet taken off. Research on CA in the CWANA region has shown that there are opportunities for CA adoption in rainfed and irrigated farming systems involving arable and perennial crops as well as livestock

    Exploring two-spin internal linear combinations for the recovery of the CMB polarization

    Get PDF
    We present a methodology to recover cosmic microwave background (CMB) polarization in which the quantity P=Q+iUP = Q+ iU is linearly combined at different frequencies using complex coefficients. This is the most general linear combination of the QQ and UU Stokes parameters which preserves the physical coherence of the residual contribution on the CMB estimation. The approach is applied to the internal linear combination (ILC) and the internal template fitting (ITF) methodologies. The variance of PP of the resulting map is minimized to compute the coefficients of the linear combination. One of the key aspects of this procedure is that it serves to account for a global frequency-dependent shift of the polarization phase. Although in the standard case, in which no global E-B transference depending on frequency is expected in the foreground components, minimizing P2\left\langle |P|^2\right\rangle is similar to minimizing Q2\left\langle Q^2\right\rangle and U2\left\langle U^2\right\rangle separately (as previous methodologies proceed), multiplying QQ and UU by different coefficients induces arbitrary changes in the polarization angle and it does not preserve the coherence between the spinorial components. The approach is tested on simulations, obtaining a similar residual level with respect to the one obtained with other implementations of the ILC, and perceiving the polarization rotation of a toy model with the frequency dependence of the Faraday rotation.Comment: 14 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Non-Gaussianity analysis on local morphological measures of WMAP data

    Get PDF
    The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity, and elongation of the signal's local features. In the present work, the non-Gaussianity of the WMAP temperature data of the cosmic microwave background (CMB) is analyzed in terms of the first four moments of the statistically isotropic random fields associated with these local morphological measures, at wavelet scales corresponding to angular sizes between 27.5 arcminutes and 30 degrees on the celestial sphere. While no detection is made neither in the orientation analysis nor in the elongation analysis, a strong detection is made in the excess kurtosis of the signed-intensity of the WMAP data. The non-Gaussianity is observed with a significance level below 0.5% at a wavelet scale corresponding to an angular size around 10 degrees, and confirmed at neighbour scales. This supports a previous detection of an excess of kurtosis in the wavelet coefficient of the WMAP data with the axisymmetric Mexican hat wavelet (Vielva et al. 2004). Instrumental noise and foreground emissions are not likely to be at the origin of the excess of kurtosis. Large-scale modulations of the CMB related to some unknown systematics are rejected as possible origins of the detection. The observed non-Gaussianity may therefore probably be imputed to the CMB itself, thereby questioning the basic inflationary scenario upon which the present concordance cosmological model relies. Taking the CMB temperature angular power spectrum of the concordance cosmological model at face value, further analysis also suggests that this non-Gaussianity is not confined to the directions on the celestial sphere with an anomalous signed-intensity.Comment: 10 pages, 3 figures. Version 2 includes minor changes to match version accepted for publication in MNRA
    corecore