2,822 research outputs found

    Effect of the Photoexcitation Wavelength and Polarization on the Generated Heat by a Nd-Doped Microspinner at the Microscale

    Get PDF
    Thermal control at small scales is critical for studying temperature-dependent biological systems and microfluidic processes. Concerning this, optical trapping provides a contactless method to remotely study microsized heating sources. This work introduces a birefringent luminescent microparticle of NaLuF4:Nd3+ as a local heater in a liquid system. When optically trapped with a circularly polarized laser beam, the microparticle rotates and heating is induced through multiphonon relaxation of the Nd3+ ions. The temperature increment in the surrounding medium is investigated, reaching a maximum heating of ≈5 °C within a 30 μm radius around the static particle under 51 mW laser excitation at 790 nm. Surprisingly, this study reveals that the particle’s rotation minimally affects the temperature distribution, contrary to the intuitive expectation of liquid stirring. The influence of the microparticle rotation on the reduction of heating transfer is analyzed. Numerical simulations confirm that the thermal distribution remains consistent regardless of spinning. Instead, the orientation-dependence of the luminescence process emerges as a key factor responsible for the reduction in heating. The anisotropy in particle absorption and the lag between the orientation of the particle and the laser polarization angle contribute to this effect. Therefore, caution must be exercised when employing spinning polarization-dependent luminescent particles for microscale thermal analysis using rotation dynamics.Projects CNS2022-135495, PID2023-151078OB-I00 and TED2021-129937B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”Spanish Ministerio de Universidades, through the FPU program (FPU19/04803)Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía and by FEDER “Una manera de hacer Europa” (P18-FR-3583

    Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation

    Get PDF
    Complexity in modern radiotherapy treatments demands advanced dosimetry systems for quality control. These systems must have several characteristics, such as high spatial resolution, tissue equivalence, three-dimensional resolution, and dose-integrating capabilities. In this scenario, gel dosimetry has proved to be a very promising option for quality assurance. In this study, the feasibility of Fricke and polymer gel dosimeters suitably shaped in form of thin layers and optically analyzed by visible light transmission imaging has been investigated for quality assurance in external radiotherapy. Dosimeter irradiation was carried out with a 6-MV photon beam (CLINAC 600C). The analysis of the irradiated dosimeters was done using two-dimensional optical transmission images. These dosimeters were compared with a treatment plan system using Monte Carlo simulations as a reference by means of a gamma test with parameters of 1 mm and 2%. Results show very good agreement between the different dosimetric systems: in the worst-case scenario, 98% of the analyzed points meet the test quality requirements. Therefore, gel dosimetry may be considered as a potential tool for the validation of other dosimetric systems.Fil: Vedelago, José Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Chacón Obando, D.. Universidad Nacional. Physics Department; Costa Rica. Universidad Nacional de Córdoba; ArgentinaFil: Malano, Francisco Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Conejeros, R.. Servicio de Radioterapia, Icos. Temuco, Chile;Fil: Figueroa, R.. Universidad de la Frontera; ChileFil: Garcia, D.. Servicio de Imagenes por Resonancia Magnética; ChileFil: González, G.. Servicio de Imagenes por Resonancia Magnética; ChileFil: Romero, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Santibañez, M.. Servicio de Imagenes por Resonancia Magnética; ChileFil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Velásquez, J.. Servicio de Radioterapia; ChileFil: Mattea, Facundo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valente, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad de La Frontera. Departamento de Ciencias Físicas; Chil

    Mean-Field Approximation for Spacing Distribution Functions in Classical Systems

    Full text link
    We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s)p^{(n)}(s) in 1D classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation (IIA) and the extended Wigner surmise (EWS). In our mean-field approach, p(n)(s)p^{(n)}(s) is calculated from a set Langevin equations which are decoupled by using a mean-field approximation. We found that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples in which the three methods mentioned previously give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed

    Fact-checkers on social networks: analysis of their presence and content distribution channels

    Get PDF
    Fact-checking is a thriving journalistic discipline that, in recent years, has gained great prominence as a tool in combating disinformation. The effectiveness of the work carried out by these journalistic initiatives depends not only on the quality of their content, but also on their ability to reach large audiences through the same channels by which disinformation spreads. In this context, we consider it important to know to what extent fact-checkers use social networks and other types of digital channels in order to deliver their fact-checks to a wide audience, whether there are differences between the practices developed by these actors according to the type of organisation to which they belong and whether there is a distinguishing element in this regard for Ibero-American fact-checkers. This article focuses on analysing the presence on social networks and the use of content distribution tools by 104 fact-checkers from all over the world pertaining to the International Fact-Checking Network in 2020. The results show significant differences in terms of network presence based on the type of entity to which fact-checkers belong, the independent fact-checkers being the ones using a wider variety of distribution channels. It has also been confirmed that Ibero-American fact-checkers have a greater presence on social networks, use more digital tools and provide more channels to share their content than the rest of the international sample.La verificación de datos es una disciplina periodística en auge que, en los últimos años, ha alcanzado un gran protagonismo como herramienta de lucha contra la desinformación. La eficacia del trabajo desarrollado por esas iniciativas periodísticas depende no solo de la calidad de sus contenidos, sino también de su capacidad de hacerlos llegar a grandes audiencias a través de las mismas vías por las que se expande la desinformación. En este contexto, consideramos importante conocer en qué medida los fact-checkers están utilizando las redes sociales y otro tipo de canales digitales para hacer llegar sus verificaciones a un público amplio, si hay diferencias entre las prácticas desarrolladas por estos actores en función del tipo de organización al que pertenecen, y si existe un elemento diferencial a este respecto de los fact-checkers iberoamericanos. Este artículo se centra en el análisis de la presencia en redes sociales y el uso de herramientas para la difusión de contenidos de 104 fact-checkers de todo el mundo pertenecientes a la International Fact-Checking Network en 2020. Los resultados muestran diferencias notables en cuanto a presencia en redes según el tipo de entidad a la que pertenece el verificador, siendo los fact-checkers independientes los que presentan una mayor variedad de canales de distribución. También se constata que los fact-checkers iberoamericanos tienen mayor presencia en redes, usan más herramientas digitales y ofrecen más vías para compartir sus contenidos que el resto de la muestra internacional analizada

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    Influence of bicarbonate, other anions and carbon dioxide in the activity of Pd-Cu catalysts for nitrate reduction in drinking water

    Full text link
    Synthetic and commercial drinking waters with different composition were studied as reaction media to study the influence of salts in NO3- catalytic reduction using a Pd-Cu catalyst supported on a carbon black. As a general trend, a decrease in NO3- conversion and an increase in NH4+ selectivity were observed for high HCO3- concentration media in mixed salts waters. Literature has commonly ascribed HCO3- effect to competitive adsorption with NO3-. However, in the current work, the mechanism for effect HCO3- is reconsidered basis on HCO2- formation during NO3- catalytic reduction, here reported for the first time. HCO2- formation indicates that hydrogenation of HCO3- occurs in addition to adsorption. Likewise, decomposition of HCO2- on the catalysts surface releases hydrogen leading to increased spill-over and relevant hydrogenation of NO3- to NH4+. The presence of SO42-, Cl- reduces NH4+ selectivity due to competition for active sites and lower HCO2- generation. Furthermore, it was observed that the use of CO2 as buffer also contribute to the hydrogenation of NO3- to NH4+ through HCO2- routeThe authors greatly appreciate the support from Spanish Agencia Estatal de Investigacion ´ RTI2018-098431-B-I00 (MCIU/AEI/FEDER, UE). Dydia Tanisha Gonzalez ´ thanks the Regional Government of Madrid a research grant (PEJ-2020-AI/AMB-17551

    Effect of Nd doping on the crystallographic, magnetic and magnetocaloric properties of NdxGd3-xCoNi

    Get PDF
    The crystal structure, magnetic and magnetocaloric properties, and the critical behavior of representative compounds in the pseudo-ternary NdxGd3-xCoNi series have been investigated (x = 0.15, 0.5, 1.0, 1.5). All these phases are isotypic with the parent compound Gd3CoNi, crystallizing with the monoclinic Dy3Ni2-type (mS20, C2/m, No. 12). All samples present a paramagnetic to ferromagnetic (PM-FM) second order phase transition with decreasing Curie temperature as the Nd concentration is increased (TC = 171 K, 150 K, 120 K and 96 K, respectively) and, at lower temperatures, there is a spin reorientation which leads to a complex magnetic ground state. The critical exponents (beta, gamma, delta) have been retrieved for the PM-FM transitions. On the one hand, in x = 0.15, 0.5, 1.5 the value of γ ≈ 1 indicates that the magnetic interactions are long-range order while the values of β point to a certain deviation from the 3D-Heisenberg universality class; on the other hand, NdGd2CoNi has a particular critical behaviour, as β is close to the Mean Field model while γ is close to the uniaxial 3D-Ising one. Concerning the magnetocaloric properties, the magnetic entropy change and refrigerant capacity present competitive values, interesting for cryogenic applications. Finally, the thermal diffusivity values of these compounds are extremely good for practical magnetocaloric refrigeration systems, as they are in the range 1.5-3 mm2/s.This work has been supported by Departamento de Educación del Gobierno Vasco (Project No. IT1430-22)

    Expansion for the solutions of the Bogomolny equations on the torus

    Full text link
    We show that the solutions of the Bogomolny equations for the Abelian Higgs model on a two-dimensional torus, can be expanded in powers of a quantity epsilon measuring the departure of the area from the critical area. This allows a precise determination of the shape of the solutions for all magnetic fluxes and arbitrary position of the Higgs field zeroes. The expansion is carried out to 51 orders for a couple of representative cases, including the unit flux case. We analyse the behaviour of the expansion in the limit of large areas, in which case the solutions approach those on the plane. Our results suggest convergence all the way up to infinite area.Comment: 26 pages, 8 figures, slightly revised version as published in JHE

    On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

    Get PDF
    We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.Instituto de Física La Plat

    On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

    Get PDF
    We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.Instituto de Física La Plat
    corecore