7,705 research outputs found

    Tetraquark Production in Double Parton Scattering

    Full text link
    We develop a model to study tetraquark production in hadronic collisions. We focus on double parton scattering and formulate a version of the color evaporation model for the production of the X(3872)X(3872) and of the T4cT_{4c} tetraquark, a state composed by the ccˉccˉc \bar{c} c \bar{c} quarks. We find that the production cross section grows rapidly with the collision energy s\sqrt{s} and make predictions for the forthcoming higher energy data of the LHC.Comment: 13 pages, 3 figures. Corrections in the text and reference

    Constraints on the duality relation from ACT cluster data

    Full text link
    The cosmic distance-duality relation (CDDR), dL(z)(1+z)2/dA(z)=ηd_L(z) (1 + z)^{2}/d_{A}(z) = \eta, where η=1\eta = 1 and dL(z)d_L(z) and dA(z)d_A(z) are, respectively, the luminosity and the angular diameter distances, holds as long as the number of photons is conserved and gravity is described by a metric theory. Testing such hypotheses is, therefore, an important task for both cosmology and fundamental physics. In this paper we use 91 measurements of the gas mass fraction of galaxy clusters recently reported by the Atacama Cosmology Telescope (ACT) survey along with type Ia supernovae observations of the Union2.1 compilation to probe a possible deviation from the value η=1\eta = 1. Although in agreement with the standard hyphothesis, we find that this combination of data tends to favor negative values of η\eta which might be associated with some physical processes increasing the number of photons and modifying the above relation to dL<(1+z)2dAd_L < (1+z)^2d_A.Comment: 4 pages, 2 figures, 2 table

    A note on the cylindrical collapse of counter-rotating dust

    Full text link
    We find analytical solutions describing the collapse of an infinitely long cylindrical shell of counter-rotating dust. We show that--for the classes of solutions discussed herein--from regular initial data a curvature singularity inevitably develops, and no apparent horizons form, thus in accord with the spirit of the hoop conjecture.Comment: 8 pages, LaTeX, ijmpd macros (included), 1 eps figure; accepted for publication in Int. J. Mod. Phys.

    Identificação de CNVs em bovinos Canchim, a partir de dados de gentipagem de SNPs com chips de alta densidade.

    Get PDF
    O objetivo desse estudo foi utilizar uma ferramenta open source, o CNstream (ALONSO et al., 2010), para a identificação de CNVs a partir de dados de genotipagem de bovinos por meio de chips de SNPs da plataforma Illumina. Foram utilizados dados de 400 animais (bovinos Canchim), participantes de um programa de melhoramento da Embrapa Pecuária Sudeste, genotipados com o BovineHD BeadChip (Illumina)

    The Conformal Anomaly in General Rank 1 Symmetric Spaces and Associated Operator Product

    Get PDF
    We compute the one-loop effective action and the conformal anomaly associated with the product ⨂pLp\bigotimes_p{\cal L}_p of the Laplace type operators Lp,p=1,2{\cal L}_p, p=1,2, acting in irreducible rank 1 symmetric spaces of non-compact type. The explicit form of the zeta functions and the conformal anomaly of the stress-energy momentum tensor is derived.Comment: 10 pages, LaTe

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Forms on Vector Bundles Over Compact Real Hyperbolic Manifolds

    Full text link
    We study gauge theories based on abelian p−p- forms on real compact hyperbolic manifolds. The tensor kernel trace formula and the spectral functions associated with free generalized gauge fields are analyzed.Comment: Int. Journ. Modern Physics A, vol. 18 (2003), 2041-205

    AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

    Get PDF
    The exergy analysis, including the calculation of the unit exergetic cost of all flows of the cogeneration plant, was the main purpose of the thermoeconomic analysis of the STAG (STeam And Gas) combined cycle CHP (Combined Heat and Power) plant. The combined cycle cogeneration plant is composed of a GE10 gas turbine (11250 kW) coupled with a HRSG (Heat Recovery Steam Generator) and a condensing extraction steam turbine. The GateCycleTM Software was used for the modeling and simulation of the combined cycle CHP plant thermal scheme, and calculation of the thermodynamic properties of each flow (Mass Flow, Pressure, Temperature, Enthalpy). The entropy values for water and steam were obtained from the Steam Tab software while the entropy and exergy of the exhaust gases were calculated as instructed by. For the calculation of the unit exergetic cost was used the neguentropy and Structural Theory of Thermoeconomic. The GateCycleTM calculations results were exported to an Excel sheet to carry out the exergy analysis and the unit exergetic cost calculations with the thermoeconomic model that was created for matrix inversion solution. Several simulations were performed varying separately five important parameters: the Steam turbine exhaust pressure, the evaporator pinch point temperature, the steam turbine inlet temperature, Rankine cycle operating pressure and the stack gas temperature to determine their impact in the recovery cycle heat exchangers transfer area, power generation and unit exergetic cost

    Experimental and theoretical evidences for the ice regime in planar artificial spin ices

    Full text link
    In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations. It is shown that a particular ASI lattice will provide a richer thermodynamics with nanomagnet spins experiencing less restriction to flip precisely in a kind of rhombic lattice. This can be observed by analysis of only three types of rectangular artificial spin ices (RASI). Denoting the horizontal and vertical lattice spacings by a and b, respectively, then, a RASI material can be described by its aspect ratio γ\gamma=a/b. The rhombic lattice emerges when γ\gamma=3\sqrt{3}. So, by comparing the impact of thermal effects on the spin flips in these three appropriate different RASI arrays, it is possible to find a system very close to the ice regime
    • …
    corecore