141 research outputs found

    Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation.

    Get PDF
    Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration

    Annexin A1 drives macrophage skewing towards a resolving phenotype to accelerate the regeneration of muscle injury through AMPK activation

    Get PDF
    Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identify Annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing towards a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then over-expressed in infiltrating macrophages, AnxA1 activates FPR2/ALX receptors and the downstream AMPK signalling cascade leading to macrophage skewing, dampening of inflammation and regeneration of muscle fibres. Mice lacking AnxA1 in all cells or in myeloid cells only display a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK null macrophages lacking AnxA1-mediated polarization. Collectively, these data identify the AnxA1/FPR2/AMPK axis as a novel pathway in skeletal muscle injury regeneration.This work was supported by CNRS, French Society of Myology and Wellcome Trust Programme Grant 086867/Z/08/Z. GJ was supported by Fondation pour la Recherche Medicale (Equipe FRM DEQ20140329495

    Development of new microalgae-based sourdough "crostini": functional aspects of Arthrospira platensis (spirulina) addition

    Get PDF
    The aim of this work was to evaluate the influence of Arthrospira platensis F&M-C256 (spirulina) incorporation on the nutritional and functional properties of “crostini”, a leavened bakery product largely consumed in Italy and Europe. Sourdough was used as leavening and fermentation agent and three concentrations of A. platensis F&M-C256 were tested: 2%, 6% and 10% (w/w). Despite a lower volume increase compared to the control, the A. platensis F&M-C256 “crostini” doughs reached a technological appropriate volume after fermentation. At the end of fermentation, no significant differences in microorganisms concentrations were observed. A. platensis F&M-C256 “crostini” showed higher protein content compared to the control. Considering the European Commission Regulation on nutritional claims, “crostini” incorporated with 6% and 10% biomass can be claimed to be a “source of protein”. Six and ten percent A. platensis “crostini” also presented significantly higher antioxidant capacity and phenolics. A significantly lower value of in vitro dry matter and protein digestibility between A. platensis F&M-C256 “crostini” and the control was found. The overall acceptability decreased with increasing A. platensis F&M-C256 addition. The combination of spirulina biomass addition and the sourdough technology led to the development of a novel microalgae-based bakery product with nutritional and functional featuresinfo:eu-repo/semantics/publishedVersio

    Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide

    Get PDF
    This work was supported by a collaborative project between Unigene Corp. and Queen Mary University of London and by the William Harvey Research Foundation. JD is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant no: 107613/Z/15/Z). MP was supported by the Wellcome Trust (grant no: 086867/Z/08)
    corecore