32 research outputs found

    Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production

    Get PDF
    BACKGROUND: As critical mediators of local and systemic inflammatory responses, cytokines are produced in the brain following ischaemic stroke. Some have been detected in the circulation of stroke patients, but their role and source is unclear. Focusing primarily on interleukin(IL)-1-related mechanisms, we serially measured plasma inflammatory markers, and the production of cytokines by whole blood, from 36 patients recruited within 12 h and followed up to 1 year after acute ischaemic stroke (AIS). RESULTS: Admission plasma IL-1 receptor antagonist (IL-1ra) concentration was elevated, relative to age-, sex-, and atherosclerosis-matched controls. IL-1β, soluble IL-1 receptor type II, tumour necrosis factor (TNF)-α, TNF-RII, IL-10 and leptin concentrations did not significantly differ from controls, but peak soluble TNF receptor type I (sTNF-RI) in the first week correlated strongly with computed tomography infarct volume at 5–7 days, mRS and BI at 3 and 12 months. Neopterin was raised in patients at 5–7 d, relative to controls, and in subjects with significant atherosclerosis. Spontaneous IL-1β, TNF-α and IL-6 gene and protein expression by blood cells was minimal, and induction of these cytokines by lipopolysaccharide (LPS) was significantly lower in patients than in controls during the first week. Minimum LPS-induced cytokine production correlated strongly with mRS and BI, and also with plasma cortisol. CONCLUSION: Absence of spontaneous whole blood gene activation or cytokine production suggests that peripheral blood cells are not the source of cytokines measured in plasma after AIS. Increased plasma IL-1ra within 12 h of AIS onset, the relationship between sTNF-RI and stroke severity, and suppressed cytokine induction suggests early activation of endogenous immunosuppressive mechanisms after AIS

    TTF-1 Action on the Transcriptional Regulation of Cyclooxygenase-2 Gene in the Rat Brain

    Get PDF
    We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain

    SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice

    Get PDF
    Background: Energy homeostasis is regulated by the hypothalamus but fails when animals are fed a high-fat diet (HFD), and leptin insensitivity and obesity develops. To elucidate the possible mechanisms underlying these effects, a microarray-based transcriptomics approach was used to identify novel genes regulated by HFD and leptin in the mouse hypothalamus. Results: Mouse global array data identified serpinA3N as a novel gene highly upregulated by both a HFD and leptin challenge. In situ hybridisation showed serpinA3N expression upregulation by HFD and leptin in all major hypothalamic nuclei in agreement with transcriptomic gene expression data. Immunohistochemistry and studies in the hypothalamic clonal neuronal cell line, mHypoE-N42 (N42), confirmed that alpha 1-antichymotrypsin (α1AC), the protein encoded by serpinA3, is localised to neurons and revealed that it is secreted into the media. SerpinA3N expression in N42 neurons is upregulated by palmitic acid and by leptin, together with IL-6 and TNFα, and all three genes are downregulated by the anti-inflammatory monounsaturated fat, oleic acid. Additionally, palmitate upregulation of serpinA3 in N42 neurons is blocked by the NFκB inhibitor, BAY11, and the upregulation of serpinA3N expression in the hypothalamus by HFD is blunted in IL-1 receptor 1 knockout (IL-1R1−/−) mice. Conclusions: These data demonstrate that serpinA3 expression is implicated in nutritionally mediated hypothalamic inflammation

    Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach

    Get PDF
    Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity, affects one fourth of young women and is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology and effective treatment strategies of endometriosis is still largely elusive. Inadequate immune and neuroendocrine responses are significantly involved in the pathophysiology of endometriosis, and key findings are summarized in the present review. We discuss here the role of different immune mechanisms particularly adhesion molecules, protein–glycan interactions, and pro-angiogenic mediators in the development and progression of the disease. Finally, we introduce the concept of endometrial dissemination as result of a neuroendocrine-immune disequilibrium in response to high levels of perceived stress caused by cardinal clinical symptoms of endometriosis
    corecore