358 research outputs found
Tailoring the atomic structure of graphene nanoribbons by STM lithography
The practical realization of nano-scale electronics faces two major
challenges: the precise engineering of the building blocks and their assembly
into functional circuits. In spite of the exceptional electronic properties of
carbon nanotubes only basic demonstration-devices have been realized by
time-consuming processes. This is mainly due to the lack of selective growth
and reliable assembly processes for nanotubes. However, graphene offers an
attractive alternative. Here we report the patterning of graphene nanoribbons
(GNRs) and bent junctions with nanometer precision, well-defined widths and
predetermined crystallographic orientations allowing us to fully engineer their
electronic structure using scanning tunneling microscope (STM) lithography. The
atomic structure and electronic properties of the ribbons have been
investigated by STM and tunneling spectroscopy measurements. Opening of
confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based
devices, is reported. This method avoids the difficulties of assembling
nano-scale components and allows the realization of complete integrated
circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres
Substrate-induced band gap opening in epitaxial graphene
Graphene has shown great application potentials as the host material for next
generation electronic devices. However, despite its intriguing properties, one
of the biggest hurdles for graphene to be useful as an electronic material is
its lacking of an energy gap in the electronic spectra. This, for example,
prevents the use of graphene in making transistors. Although several proposals
have been made to open a gap in graphene's electronic spectra, they all require
complex engineering of the graphene layer. Here we show that when graphene is
epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap
decreases as the sample thickness increases and eventually approaches zero when
the number of layers exceeds four. We propose that the origin of this gap is
the breaking of sublattice symmetry owing to the graphene-substrate
interaction. We believe our results highlight a promising direction for band
gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer
Here we study the evolution of local electronic properties of a twisted
graphene bilayer induced by a strain and a high curvature. The strain and
curvature strongly affect the local band structures of the twisted graphene
bilayer; the energy difference of the two low-energy van Hove singularities
decreases with increasing the lattice deformations and the states condensed
into well-defined pseudo-Landau levels, which mimic the quantization of massive
Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle.
The joint effect of strain and out-of-plane distortion in the graphene wrinkle
also results in a valley polarization with a significant gap, i.e., the
eight-fold degenerate Landau level at the charge neutrality point is splitted
into two four-fold degenerate quartets polarized on each layer. These results
suggest that strained graphene bilayer could be an ideal platform to realize
the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Topological Surface States Protected From Backscattering by Chiral Spin Texture
Topological insulators are a new class of insulators in which a bulk gap for
electronic excitations is generated by strong spin orbit coupling. These novel
materials are distinguished from ordinary insulators by the presence of gapless
metallic boundary states, akin to the chiral edge modes in quantum Hall
systems, but with unconventional spin textures. Recently, experiments and
theoretical efforts have provided strong evidence for both two- and
three-dimensional topological insulators and their novel edge and surface
states in semiconductor quantum well structures and several Bi-based compounds.
A key characteristic of these spin-textured boundary states is their
insensitivity to spin-independent scattering, which protects them from
backscattering and localization. These chiral states are potentially useful for
spin-based electronics, in which long spin coherence is critical, and also for
quantum computing applications, where topological protection can enable
fault-tolerant information processing. Here we use a scanning tunneling
microscope (STM) to visualize the gapless surface states of the
three-dimensional topological insulator BiSb and to examine their scattering
behavior from disorder caused by random alloying in this compound. Combining
STM and angle-resolved photoemission spectroscopy, we show that despite strong
atomic scale disorder, backscattering between states of opposite momentum and
opposite spin is absent. Our observation of spin-selective scattering
demonstrates that the chiral nature of these states protects the spin of the
carriers; they therefore have the potential to be used for coherent spin
transport in spintronic devices.Comment: to be appear in Nature on August 9, 200
Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor
The electronic density of states of graphene is equivalent to that of
relativistic electrons. In the absence of disorder or external doping the Fermi
energy lies at the Dirac point where the density of states vanishes. Although
transport measurements at high carrier densities indicate rather high
mobilities, many questions pertaining to disorder remain unanswered. In
particular, it has been argued theoretically, that when the average carrier
density is zero, the inescapable presence of disorder will lead to electron and
hole puddles with equal probability. In this work, we use a scanning single
electron transistor to image the carrier density landscape of graphene in the
vicinity of the neutrality point. Our results clearly show the electron-hole
puddles expected theoretically. In addition, our measurement technique enables
to determine locally the density of states in graphene. In contrast to
previously studied massive two dimensional electron systems, the kinetic
contribution to the density of states accounts quantitatively for the measured
signal. Our results suggests that exchange and correlation effects are either
weak or have canceling contributions.Comment: 13 pages, 5 figure
Maximising the availability and use of high quality evidence for policymaking:Collaborative, targeted and efficient evidence reviews
Abstract A number of barriers have been identified to getting evidence into policy. In particular, a lack of policy relevance and lack of timeliness have been identified as causing tension between researchers and policy makers. Rapid reviews are used increasingly as an approach to address timeliness, however, there is a lack of consensus on the most effective review methods and they do not necessarily address the need of policy makers. In the course of our work with the Scottish Government’s Review of maternity and neonatal services we developed a new approach to evidence synthesis, which this paper will describe. We developed a standardised approach to produce collaborative, targeted and efficient evidence reviews for policy making. This approach aimed to ensure the reviews were policy relevant, high quality and up-to-date, and which were presented in a consistent, transparent, and easy to access format. The approach involved the following stages: 1) establishing a review team with expertise both in the topic and in systematic reviewing, 2) clarifying the review questions with policy makers and subject experts (i.e., health professionals, service user representatives, researchers) who acted as review sponsors, 3) developing review protocols to systematically identify quantitative and qualitative review-level evidence on effectiveness, sustainability and acceptability; if review level evidence was not available, primary studies were sought, 4) agreeing a framework to structure the analysis of the reviews around a consistent set of key concepts and outcomes; in this case a published framework for maternal and newborn care was used, 5) developing an iterative process between policy makers, reviewers and review sponsors, 6) rapid searches and retrieval of literature, 7) analysis of identified literature which was mapped to the framework and included review sponsor input, 8) production of recommendations mapped to the agreed framework and presented as ‘summary topsheets’ in a consistent and easy to read format. Our approach has drawn on different components of pre-existing rapid review methodology to provide a rigorous and pragmatic approach to rapid evidence synthesis. Additionally, the use of a framework to map the evidence helped structure the review questions, expedited the analysis and provided a consistent template for recommendations, which took into account the policy context. We therefore propose that our approach (described in this paper) can be described as producing collaborative, targeted and efficient evidence reviews for policy makers
A finer grained approach to psychological capital and work performance
Purpose
Psychological capital is a set of personal resources comprised by hope, efficacy, optimism, and resilience, which previous research has supported as being valuable for general work performance. However, in today’s organizations, a multidimensional approach is required to understanding work performance, thus, we aimed to determine whether psychological capital improves proficiency, adaptivity, and proactivity, and also whether hope, efficiency, resilience, and optimism have a differential contribution to the same outcomes. Analyzing the temporal meaning of each psychological capital dimension, this paper theorizes the relative weights of psychological capital dimensions on proficiency, adaptivity, and proactivity, proposing also that higher relative weight dimensions are helpful to cope with job demands and perform well.
Methodology
Two survey studies, the first based on cross-sectional data and the second on two waves of data, were conducted with employees from diverse organizations, who provided measures of their psychological capital, work performance, and job demands. Data was modeled with regression analysis together with relative weights analysis.
Findings
Relative weights for dimensions of psychological capital were supported as having remarkable unique contributions for proficient, adaptive, and proactive behavior, particularly when job demands were high.
Originality/Value
We concluded that organizations facing high job demands should implement actions to enhance psychological capital dimensions; however, those actions should focus on the specific criterion of performance of interest
Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality
A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism.16 page(s
- …
