2,830 research outputs found

    Lessons from monochorionic twin delivery

    Get PDF
    The presence of acute peripartum anaemia in a monochorionic twin pregnancy represents a clinical challenge requiring prompt recognition and management. Twin-to-twin transfusion syndrome (TTTS) is a major complication of these pregnancies and a medical emergency in its acute form. Acute intrapartum fetoplacental transfusion (AIFT) has been reported infrequently. The authors present a case of a probable acute TTTS in an uneventful monochorionic monoamnionic twin pregnancy, where typical ultrasound criteria for long-standing TTTS were absent. The first twin was born pale, hypotonic and developed hypovolemic shock due to acute anaemia. Soon after birth, she presented with seizures and a cerebral ultrasound detected a large parieto-occipital infarction. The second twin, although plethoric, was clinically well. The risk of acute TTTS and AIFT, although infrequent and unpredictable, should be kept in mind when planning delivery of monochorionic twins, because the consequences for one or both twins can be disastrous

    Mobility Management Architecture in Different RATs Based Network Slicing

    Get PDF
    Network slicing is an architectural solution that enables the future 5G network to offer a high data traffic capacity and efficient network connectivity. Moreover, software defined network (SDN) and network functions virtualization (NFV) empower this architecture to visualize the physical network resources. The network slicing identified as a multiple logical network, where each network slice dedicates as an end-to-end network and works independently with other slices on common physical network resources. Most user devices have more than one smart wireless interfaces to connect to different radio access technologies (RATs) such as WiFi and LTE, thereby network operators utilize this facility to offload mobile data traffic. Therefore, it is important to enable a network slicing to manage different RATs on the same logical network as a way to mitigate the spectrum scarcity problem and enables a slice to control its user’s mobility across different access networks. In this paper, we propose a mobility management architecture based network slicing where each slice manages its users across heterogeneous radio access technologies such as WiFi, LTE and 5G networks. In this architecture, each slice has a different mobility demands and these demands are governed by a network slice configuration and service characteristics. Therefore, our mobility management architecture follows a modular approach where each slice has individual module to handle the mobility demands and enforce the slice policy for mobility management. The advantages of applying our proposed architecture include: i) Sharing network resources between different network slices; ii) creating logical platform to unify different RATs resources and allowing all slices to share them; iii) satisfying slice mobility demands

    Broad clinical involvement in a family affected by the fragile X premutation

    Get PDF
    The mutations in the FMR1 gene have been described as a family of disorders called fragile X-associated disorders including fragile X syndrome, fragile X-associated tremor/ataxia syndrome, primary ovarian insufficiency, and other problems associated with the premutation, such as hypothyroidism, hypertension, neuropathy, anxiety, depression, attention-deficit hyperactivity disorders, and autism spectrum disorders. The premutation is relatively common in the general population affecting 1 of 130 to 250 female individuals and 1 of 250 to 800 male individuals. Therefore, to provide appropriate treatment and genetic counseling for all of the carriers and affected individuals in a family, a detailed family history that reviews many of the disorders that are related to both the premutation and the full mutation should be carried out as exemplified in these cases. To facilitate the integration of this knowledge into clinical practice, this is the first case report that demonstrates only premutation involvement across 3 generations

    The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages

    Get PDF
    Next Generation Sequencing (NGS) strategies, like RNA-Seq, have revealed the transcription of a wide variety of long non-coding RNAs (lncRNAs) in the genomes of several organisms. In the present work we assessed the lncRNAs complement of Schistosoma mansoni, the blood fluke that causes schistosomiasis, ranked among the most prevalent parasitic diseases worldwide. We focused on the long intergenic/intervening ncRNAs (lincRNAs), hidden within the large amount of information obtained through RNA-Seq in S. mansoni (88 libraries). Our computational pipeline identified 7029 canonically-spliced putative lincRNA genes on 2596 genomic loci (at an average 2.7 isoforms per lincRNA locus), as well as 402 spliced lncRNAs that are antisense to protein-coding (PC) genes. Hundreds of lincRNAs showed traits for being functional, such as the presence of epigenetic marks at their transcription start sites, evolutionary conservation among other schistosome species and differential expression across five different life-cycle stages of the parasite. Real-time qPCR has confirmed the differential life-cycle stage expression of a set of selected lincRNAs. We have built PC gene and lincRNA co-expression networks, unraveling key biological processes where lincRNAs might be involved during parasite development. This is the first report of a large-scale identification and structural annotation of lncRNAs in the S. mansoni genome

    An Efficient Resource Management Mechanism for Network Slicing in LTE Network

    Get PDF
    The proliferation of mobile devices and user applications has continued to contribute to the humongous volume of data traffic in cellular networks. To surmount this challenge, service and resource providers are looking for alternative mechanisms that can successfully facilitate managing network resources in a more dynamic, predictive and distributed manner. New concepts of network architectures such as Software Defined Network (SDN) and Network Function Virtualization (NFV) have paved the way to move from static to flexible networks. They make networks more flexible (i.e. network providers capable of on-demand provisioning), easily customizable and cost effective. In this regard, network slicing is emerging as a new technology built on the concepts of SDN and NFV. It splits a network infrastructure into isolated virtual networks and allows them to manage resources allocation individually based on their requirements and characteristics. Most of the existing solutions for network slicing are computationally expensive because of the length of time they require to estimate the resources required for each isolated slice. In addition, there is no guarantee that the resource allocation is fairly shared among users in a slice. In this paper, we propose a Network Slicing Resource Management (NSRM) mechanism to assign the required resources for each slice in an LTE network, taking into consideration resources isolation between different slices. In addition, NSRM aims to ensure isolation and fair sharing of distributed bandwidths between users belonging to the same slice. In NSRM, depending on requirements, each slice can be customized (e.g. each can have a different scheduling policy)

    Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer

    Full text link
    Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature. The strain and curvature strongly affect the local band structures of the twisted graphene bilayer; the energy difference of the two low-energy van Hove singularities decreases with increasing the lattice deformations and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap, i.e., the eight-fold degenerate Landau level at the charge neutrality point is splitted into two four-fold degenerate quartets polarized on each layer. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
    corecore