68 research outputs found

    Pattern of extinction of the woolly mammoth in Beringia.

    Get PDF
    Extinction of the woolly mammoth in Beringia has long been subject to research and speculation. Here we use a new geo-referenced database of radiocarbon-dated evidence to show that mammoths were abundant in the open-habitat of Marine Isotope Stage 3 (∼45-30 ka). During the Last Glacial Maximum (∼25-20 ka), northern populations declined while those in interior Siberia increased. Northern mammoths increased after the glacial maximum, but declined at and after the Younger Dryas (∼12.9-11.5 ka). Remaining continental mammoths, now concentrated in the north, disappeared in the early Holocene with development of extensive peatlands, wet tundra, birch shrubland and coniferous forest. Long sympatry in Siberia suggests that humans may be best seen as a synergistic cofactor in that extirpation. The extinction of island populations occurred at ∼4 ka. Mammoth extinction was not due to a single cause, but followed a long trajectory in concert with changes in climate, habitat and human presence

    Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy

    Get PDF
    Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens

    Genotyping of Capreolus pygargus Fossil DNA from Denisova Cave Reveals Phylogenetic Relationships between Ancient and Modern Populations

    Get PDF
    BACKGROUND: The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples. CONCLUSION/SIGNIFICANCE: Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer represent a complex and heterogeneous species with high migration rates and without evident subspecies structure. Low genetic diversity of the West Siberian Plain population indicates a recent bottleneck or founder effect

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    Get PDF
    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures

    Biomass of Scyphozoan Jellyfish, and Its Spatial Association with 0-Group Fish in the Barents Sea

    Get PDF
    An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region

    Highlighting the Role of Biomarkers of Inflammation in the Diagnosis and Management of Complex Regional Pain Syndrome

    Get PDF
    Complex regional pain syndrome (CRPS) is characterized by continuous pain that is often accompanied by sensory, motor, vasomotor, sudomotor, and trophic disturbances. If left untreated, it can have a significant impact on the quality of life of patients. The diagnosis of CRPS is currently based on a set of relatively subjective clinical criteria: the New International Association for the Study of Pain clinical diagnostic criteria for CRPS. There are still no objective laboratory tests to diagnose CRPS and there is a great need for simple, objective, and easily measurable biomarkers in the diagnosis and management of this disease. In this review, we discuss the role of inflammation in the multi-mechanism pathophysiology of CRPS and highlight the application of potential biomarkers of inflammation in the diagnosis and management of this disease

    Complex regional pain syndrome - phenotypic characteristics and potential biomarkers

    Get PDF
    Complex regional pain syndrome (CRPS) is a pain condition that usually affects a single limb, often following an injury. The underlying pathophysiology seems to be complex and probably varies between patients. Clinical diagnosis is based on internationally agreed-upon criteria, which consider the reported symptoms, presence of signs and exclusion of alternative causes. Research into CRPS biomarkers to support patient stratification and improve diagnostic certainty is an important scientific focus, and recent progress in this area provides an opportunity for an up-to-date topical review of measurable disease-predictive, diagnostic and prognostic parameters. Clinical and biochemical attributes of CRPS that may aid diagnosis and determination of appropriate treatment are delineated. Findings that predict the development of CRPS and support the diagnosis include trauma-related factors, neurocognitive peculiarities, psychological markers, and local and systemic changes that indicate activation of the immune system. Analysis of signatures of non-coding microRNAs that could predict the treatment response represents a new line of research. Results from the past 5 years of CRPS research indicate that a single marker for CRPS will probably never be found; however, a range of biomarkers might assist in clinical diagnosis and guide prognosis and treatment

    Neuroinflammation, Neuroautoimmunity, and the Co-Morbidities of Complex Regional Pain Syndrome

    Full text link
    corecore