34 research outputs found

    Achieving In Vivo Target Depletion through the Discovery and Optimization of Benzimidazolone BCL6 Degraders.

    Get PDF
    Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    Dirty and 40 days in the wilderness: Eliciting childbirth and postnatal cultural practices and beliefs in Nepal.

    Get PDF
    Background: Pregnancy and childbirth are socio-cultural events that carry varying meanings across different societies and cultures. These are often translated into social expectations of what a particular society expects women to do (or not to do) during pregnancy, birth and/or the postnatal period. This paper reports a study exploring beliefs around childbirth in Nepal, a low-income country with a largely Hindu population. The paper then sets these findings in the context of the wider global literature around issues such as periods where women are viewed as polluted (or dirty even) after childbirth. Methods: A qualitative study comprising five in-depth face-to-face interviews and 14 focus group discussions with mainly women, but also men and health service providers. The qualitative findings in Nepal were compared and contrasted with the literature on practices and cultural beliefs related to the pregnancy and childbirth period across the globe and at different times in history. Results: The themes that emerged from the analysis included: (a) cord cutting & placenta rituals; (b) rest & seclusion; (c) purification, naming & weaning ceremonies and (d) nutrition and breastfeeding. Physiological changes in mother and baby may underpin the various beliefs, ritual and practices in the postnatal period. These practices often mean women do not access postnatal health services. Conclusions: The cultural practices, taboos and beliefs during pregnancy and around childbirth found in Nepal largely resonate with those reported across the globe. This paper stresses that local people’s beliefs and practices offer both opportunities and barriers to health service providers. Maternity care providers need to be aware of local values, beliefs and traditions to anticipate and meet the needs of women, gain their trust and work with them

    Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia

    Get PDF
    Abstract Background A relationship between corneal arcus and atherosclerosis has long been suspected but is controversial. The homozygous familial hypercholesterolemia patients in this study present a unique opportunity to assess this issue. They have both advanced atherosclerosis and corneal arcus. Methods This is a cross-sectional study of 17 patients homozygous for familial hypercholesterolemia presenting to the Clinical Center of the National Institutes of Health. Plasma lipoproteins, circumferential extent of arcus, thoracic aorta and coronary calcific atherosclerosis score, and Achilles tendon width were measured at the National Institutes of Health. Results Patients with corneal arcus had higher scores for calcific atherosclerosis (mean 2865 compared to 412), cholesterol-year score (mean 11830 mg-yr/dl compared to 5707 mg-yr/dl), and Achilles tendon width (mean 2.54 cm compared to 1.41 cm) than those without. Corneal arcus and Achilles tendon width were strongly correlated and predictive of each other. Although corneal arcus was correlated with calcific atherosclerosis (r = 0.67; p = 0.004), it was not as highly correlated as was the Achilles tendon width (r = 0.855; p Conclusion Corneal arcus reflects widespread tissue lipid deposition and is correlated with both calcific atherosclerosis and xanthomatosis in these patients. Patients with more severe arcus tend to have more severe calcific atherosclerosis. Corneal arcus is not as good an indicator of calcific atherosclerosis as Achilles tendon thickness, but its presence suggests increased atherosclerosis in these hypercholesterolemic patients.</p

    Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs

    Get PDF
    Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival motor neuron (SMN) protein. SMN together with Gemins2-8 and unrip proteins form a macromolecular complex that functions in the assembly of small nuclear ribonucleoproteins (snRNPs) of both the major and the minor splicing pathways. It is not known whether the levels of spliceosomal snRNPs are decreased in SMA. Here we analyzed the consequence of SMN deficiency on snRNP metabolism in the spinal cord of mouse models of SMA with differing phenotypic severities. We demonstrate that the expression of a subset of Gemin proteins and snRNP assembly activity are dramatically reduced in the spinal cord of severe SMA mice. Comparative analysis of different tissues highlights a similar decrease in SMN levels and a strong impairment of snRNP assembly in tissues of severe SMA mice, although the defect appears smaller in kidney than in neural tissue. We further show that the extent of reduction in both Gemin proteins expression and snRNP assembly activity in the spinal cord of SMA mice correlates with disease severity. Remarkably, defective SMN complex function in snRNP assembly causes a significant decrease in the levels of a subset of snRNPs and preferentially affects the accumulation of U11 snRNPβ€”a component of the minor spliceosomeβ€”in tissues of severe SMA mice. Thus, impairment of a ubiquitous function of SMN changes the snRNP profile of SMA tissues by unevenly altering the normal proportion of endogenous snRNPs. These findings are consistent with the hypothesis that SMN deficiency affects the splicing machinery and in particular the minor splicing pathway of a rare class of introns in SMA

    Modeling Spinal Muscular Atrophy in Drosophila

    Get PDF
    Spinal Muscular Atrophy (SMA), a recessive hereditary neurodegenerative disease in humans, has been linked to mutations in the survival motor neuron (SMN) gene. SMA patients display early onset lethality coupled with motor neuron loss and skeletal muscle atrophy. We used Drosophila, which encodes a single SMN ortholog, survival motor neuron (Smn), to model SMA, since reduction of Smn function leads to defects that mimic the SMA pathology in humans. Here we show that a normal neuromuscular junction (NMJ) structure depends on SMN expression and that SMN concentrates in the post-synaptic NMJ regions. We conducted a screen for genetic modifiers of an Smn phenotype using the Exelixis collection of transposon-induced mutations, which affects approximately 50% of the Drosophila genome. This screen resulted in the recovery of 27 modifiers, thereby expanding the genetic circuitry of Smn to include several genes not previously known to be associated with this locus. Among the identified modifiers was wishful thinking (wit), a type II BMP receptor, which was shown to alter the Smn NMJ phenotype. Further characterization of two additional members of the BMP signaling pathway, Mothers against dpp (Mad) and Daughters against dpp (Dad), also modify the Smn NMJ phenotype. The NMJ defects caused by loss of Smn function can be ameliorated by increasing BMP signals, suggesting that increased BMP activity in SMA patients may help to alleviate symptoms of the disease. These results confirm that our genetic approach is likely to identify bona fide modulators of SMN activity, especially regarding its role at the neuromuscular junction, and as a consequence, may identify putative SMA therapeutic targets

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    Β© Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    Inter- and intra-specific variation in myosin light chain and troponin I composition in fast fibres from two species of fish (genus Oreochromis) which have different temperature-dependent contractile properties.

    No full text
    The contractile properties and myofibrillar protein composition of fast muscle have been characterized in pure strains of two tropical fish Oreochromis niloticus and O. andersoni. Single fast muscle fibres were isolated from the abdominal myotomes and chemically skinned. The maximum tension-temperature relationships of fibres were similar at 25-30&deg; C, but diverged below 17&deg; C. At 10&deg; C, maximum tension was around 60% higher in O. andersoni (160 &plusmn; 15 kN m-2) than O. niloticus (105 &plusmn;13 kN m-2) (mean &plusmn;sd). The myofibrillar protein composition of fast fibres was investigated using one-dimensional and two-dimensional gel electrophoresis and peptide mapping. The two Oreochromis species differed with respect to the composition of myosin light chains, troponin I and mysoin heavy chains (V8 protease and chymotrypsin peptide maps). An unexpected finding was the presence of two isoforms of myosin light chain 1 in O. andersoni, with apparent molecular masses of 27.5 kDa (LC1f1) and 26.9 kDa (LC1f2). Individuals with LC1f1 (n=20) and LC1f1+LC1f2 (n=12) were represented in the population studied. The myosin light chain 3 (LC3f) content of fibres was similar in both cases. Breeding experiments established that these intra-specific variations in isoform composition were heritable. Fast muscle from O. niloticus and O. andersoni contain two isoforms of troponin I (TNIf1+TNIf2) which were both expressed in single fibres. The identity of TNI was confirmed using a stationary phase troponin-C affinity column. Of the 20 O. niloticus studied seven contained only TNIf1. The two Oreochromis species studied produce fertile F1 hybrids, are susceptible to ploidy manipulation, have a short generation time and rapid growth rates. They therefore represent a good model for investigating the genetic mechanisms underlying the inheritance of different force-generating capacities in fish
    corecore