37 research outputs found

    The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages

    Get PDF
    Next Generation Sequencing (NGS) strategies, like RNA-Seq, have revealed the transcription of a wide variety of long non-coding RNAs (lncRNAs) in the genomes of several organisms. In the present work we assessed the lncRNAs complement of Schistosoma mansoni, the blood fluke that causes schistosomiasis, ranked among the most prevalent parasitic diseases worldwide. We focused on the long intergenic/intervening ncRNAs (lincRNAs), hidden within the large amount of information obtained through RNA-Seq in S. mansoni (88 libraries). Our computational pipeline identified 7029 canonically-spliced putative lincRNA genes on 2596 genomic loci (at an average 2.7 isoforms per lincRNA locus), as well as 402 spliced lncRNAs that are antisense to protein-coding (PC) genes. Hundreds of lincRNAs showed traits for being functional, such as the presence of epigenetic marks at their transcription start sites, evolutionary conservation among other schistosome species and differential expression across five different life-cycle stages of the parasite. Real-time qPCR has confirmed the differential life-cycle stage expression of a set of selected lincRNAs. We have built PC gene and lincRNA co-expression networks, unraveling key biological processes where lincRNAs might be involved during parasite development. This is the first report of a large-scale identification and structural annotation of lncRNAs in the S. mansoni genome

    Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid-β Plaque Load in the TgCRND8 Mouse Model of Alzheimer's Disease

    Get PDF
    Immunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Aβ), which circulate in the bloodstream and remove Aβ from the brain [1], [2]. In mouse models of AD, the administration of anti-Aβ antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Aβ plaque pathology [3], [4]. Therefore, delivering anti-Aβ antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB) [5], allowing intravenously administered therapeutics to enter the brain [6]–[8]. Our goal was to establish that anti-Aβ antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) [9] can reduce plaque pathology. To test this, TgCRND8 mice [10] received intravenous injections of MRI and FUS contrast agents, as well as anti-Aβ antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Aβ plaques in targeted cortical areas. Four days post-treatment, Aβ pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Aβ antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology

    Tempo and Mode in Evolution of Transcriptional Regulation

    Get PDF
    Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable

    Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers

    Get PDF
    Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation’ from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing’ the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure

    Preliminary study on the application of radio-telemetry techniques to evaluate movements of fish in the Lateral canal at Itaipu Dam, Brazil

    No full text
    A preliminary study on the application of radio–telemetry techniques to describe the movements of fish in a bypass channel at Itaipu Dam (Paraná River), known as Canal da Piracema, was carried out between January and February of 2004. Fourteen individuals of six species (Prochilodus lineatus, Leporinus friderici, Schizodon borellii, Pseudoplatystoma fasciatum, Pterodoras granulosus and Cichla kelberi) were intragastrically and surgically radiotagged and monitored by three experimental fixed radio–telemetry stations installed in the upper portion of the Canal. The surgical implantation of transmitters and the anesthesia using clove oil proved to be more efficient and allowed easier handling in comparison to intragastric implantation and electronarcosis immobilization. The use of fixed stations to obtain data was found to be very suitable for tracking movements of several different fish species in the Itaipu lateral channel. Three species (P. granulosus, S. borellii and C. kelbei) moved downstream after release. Two individuals of P. fasciatum and two of P. lineatus migrated upstream, leaving the channel 7 and 10 days and 2 and 24 days after release, respectively. Leporinus friderici was the only species that did not leave the release site until the end of the study period

    Amyloid-β oligomer specificity mediated by the IgM isotype : implications for a specific protective mechanism exerted by endogenous auto-antibodies

    Get PDF
    Background Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects. In strong support of this notion, immunological targeting of Aβ oligomers in AD mice-models shows that memory impairments can be restored without affecting the total burden of Aβ deposits. Consequently a specific immunological targeting of Aβ oligomers is of high therapeutic interest. Methodology/Principal Findings Previously the generation of conformational-dependent oligomer specific anti-Aβ antibodies has been described. However, to avoid the difficult task of identifying a molecular architecture only present on oligomers, we have focused on a more general approach based on the hypothesis that all oligomers expose multiple identical epitopes and therefore would have an increased binding to a multivalent receptor. Using the polyvalent IgM immunoglobulin we have developed a monoclonal anti-Aβ antibody (OMAB). OMAB only demonstrates a weak interaction with Aβ monomers and dimers having fast on and off-rate kinetics. However, as an effect of avidity, its interaction with Aβ-oligomers results in a strong complex with an exceptionally slow off-rate. Through this mechanism a selectivity towards Aβ oligomers is acquired and OMAB fully inhibits the cytotoxic effect exerted by Aβ(1-42) at highly substoichiometric ratios. Anti-Aβ auto-antibodies of IgM isotype are frequently present in the sera of humans. Through a screen of endogenous anti-Aβ IgM auto-antibodies from a group of healthy individuals we show that all displays a preference for oligomeric Aβ. Conclusions/Significance Taken together we provide a simple and general mechanism for targeting of oligomers without the requirement of conformational-dependent epitopes. In addition, our results suggest that IgM anti-Aβ auto-antibodies may exert a more specific protective mechanism in vivo than previously anticipated
    corecore