177 research outputs found

    The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study

    Get PDF
    Background: Hepatic failure has been associated with reported therapeutic use of acetaminophen by alcoholic patients. The highest risk period for alcoholic patients is immediately after discontinuation of alcohol intake. This period exhibits the largest increase in CYP2E1 induction and lowest glutathione levels. Our hypothesis was that common liver tests would be unaffected by administration of the maximum recommended daily dosage of acetaminophen for 3 consecutive days to newly-abstinent alcoholic subjects. Methods: Adult alcoholic subjects entering two alcohol detoxification centers were enrolled in a prospective double-blind, randomized, placebo-controlled trial. Subjects were randomized to acetaminophen, 4 g/day, or placebo for 3 consecutive days. The study had 95% probability of detecting a 15 IU/L difference in serum ALT. Results: A total of 443 subjects were enrolled: 308 (258 completed) received acetaminophen and 135 subjects (114 completed) received placebo. Study groups did not differ in demographics, alcohol consumption, nutritional status or baseline laboratory assessments. The peak mean ALT activity was 57 [plus or minus] 45 IU/L and 55 [plus or minus] 48 IU/L in the acetaminophen and placebo groups, respectively. Subgroup analyses for subjects presenting with an elevated ALT, subjects fulfilling a diagnosis of alcoholic hepatitis and subjects attaining a peak ALT greater than 200 IU/L showed no statistical difference between the acetaminophen and control groups. The one participant developing an increased international normalized ratio was in the placebo group. Conclusion: Alcoholic patients treated with the maximum recommended daily dose of acetaminophen for 3 consecutive days did not develop increases in serum transaminase or other measures of liver injury. Treatment of pain or fever for 3 days with acetaminophen appears safe in newly-abstinent alcoholic patients, such as those presenting for acute medical care.Funding for this study was provided by McNeil Consumer Healthcare to the Denver Health Authority, Denver, Colorado

    OmpR controls Yersinia enterocolitica motility by positive regulation of flhDC expression

    Get PDF
    Flagella and invasin play important roles during the early stages of infection by the enteric pathogen Yersinia enterocolitica. Our previous study demonstrated that OmpR negatively regulates invasin gene expression at the transcriptional level. The present study focused on the role of OmpR in the regulation of flagella expression. Motility assays and microscopic observations revealed that an ompR mutant strain exhibits a non-motile phenotype due to the lack of flagella. An analysis of flhDC::lacZYA chromosomal fusions demonstrated a decrease in flhDC expression in ompR mutant cells, suggesting a role for OmpR in the positive control of flagellar master operon flhDC, which is in contrast to the negative role it plays in Escherichia coli. Moreover, high temperature or osmolarity and low pH decreased flhDC expression and OmpR was not required for the response to these factors. Evidence from an examination of the DNA binding properties of OmpR in vitro indicated that the mechanism by which OmpR regulates flhDC is direct. Electrophoretic mobility shift assays confirmed that OmpR binds specifically to the flhDC promoter region and suggested the presence of more than one OmpR-binding site. In addition, phosphorylation of OmpR by acetyl-P appeared to stimulate the binding abilities of OmpR. Together with the results of our previous studies revealing the negative role of OmpR in the regulation of invasin expression, these findings support a model in which invasion and motility might be reciprocally regulated by OmpR

    Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum

    Get PDF
    In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced

    Mineralization of Acephate, a Recalcitrant Organophosphate Insecticide Is Initiated by a Pseudomonad in Environmental Samples

    Get PDF
    An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as described in this work can promote the first step of acephate mineralization in soil microbial communities

    Predicting Prokaryotic Ecological Niches Using Genome Sequence Analysis

    Get PDF
    Automated DNA sequencing technology is so rapid that analysis has become the rate-limiting step. Hundreds of prokaryotic genome sequences are publicly available, with new genomes uploaded at the rate of approximately 20 per month. As a result, this growing body of genome sequences will include microorganisms not previously identified, isolated, or observed. We hypothesize that evolutionary pressure exerted by an ecological niche selects for a similar genetic repertoire in those prokaryotes that occupy the same niche, and that this is due to both vertical and horizontal transmission. To test this, we have developed a novel method to classify prokaryotes, by calculating their Pfam protein domain distributions and clustering them with all other sequenced prokaryotic species. Clusters of organisms are visualized in two dimensions as ‘mountains’ on a topological map. When compared to a phylogenetic map constructed using 16S rRNA, this map more accurately clusters prokaryotes according to functional and environmental attributes. We demonstrate the ability of this map, which we term a “niche map”, to cluster according to ecological niche both quantitatively and qualitatively, and propose that this method be used to associate uncharacterized prokaryotes with their ecological niche as a means of predicting their functional role directly from their genome sequence

    Body image disturbance and surgical decision making in egyptian post menopausal breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In most developing countries, as in Egypt; postmenopausal breast cancer cases are offered a radical form of surgery relying on their unawareness of the subsequent body image disturbance. This study aimed at evaluating the effect of breast cancer surgical choice; Breast Conservative Therapy (BCT) versus Modified Radical Mastectomy (MRM); on body image perception among Egyptian postmenopausal cases.</p> <p>Methods</p> <p>One hundred postmenopausal women with breast cancer were divided into 2 groups, one group underwent BCT and the other underwent MRM. Pre- and post-operative assessments of body image distress were done using four scales; Breast Impact of Treatment Scale (BITS), Impact of Event Scale (IES), Situational Discomfort Scale (SDS), and Body Satisfaction Scale (BSS).</p> <p>Results</p> <p>Preoperative assessment showed no statistical significant difference regarding cognitive, affective, behavioral and evaluative components of body image between both studied groups. While in postoperative assessment, women in MRM group showed higher levels of body image distress among cognitive, affective and behavioral aspects.</p> <p>Conclusion</p> <p>Body image is an important factor for postmenopausal women with breast cancer in developing countries where that concept is widely ignored. We should not deprive those cases from their right of less mutilating option of treatment as BCT.</p

    Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Get PDF
    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time

    Structures of Helicobacter pylori Shikimate Kinase Reveal a Selective Inhibitor-Induced-Fit Mechanism

    Get PDF
    Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSK·SO4, R57A, and HpSK•shikimate-3-phosphate•ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114A•162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism

    The Waddlia Genome: A Window into Chlamydial Biology

    Get PDF
    Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae
    corecore